add scheduler api
This commit is contained in:
126
functions/api/scheduler.ts
Normal file
126
functions/api/scheduler.ts
Normal file
@@ -0,0 +1,126 @@
|
||||
import { modelConfigs, shedulerAICharacter } from '../../src/config/aiCharacters';
|
||||
import OpenAI from 'openai';
|
||||
|
||||
interface AICharacter {
|
||||
id: string;
|
||||
name: string;
|
||||
tags?: string[];
|
||||
}
|
||||
|
||||
interface MessageHistory {
|
||||
role: string;
|
||||
content: string;
|
||||
name: string;
|
||||
}
|
||||
|
||||
export async function onRequestPost({ env, request }) {
|
||||
try {
|
||||
const { message, history, availableAIs } = await request.json();
|
||||
const selectedAIs = await scheduleAIResponses(message, history, availableAIs);
|
||||
|
||||
return Response.json({
|
||||
selectedAIs: selectedAIs
|
||||
});
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
return Response.json(
|
||||
{ error: error.message },
|
||||
{ status: 500 }
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
async function analyzeMessageWithAI(message: string, allTags: string[]): Promise<string[]> {
|
||||
const shedulerAI = shedulerAICharacter(message, allTags);
|
||||
const modelConfig = modelConfigs.find(config => config.model === shedulerAI.model);
|
||||
const openai = new OpenAI({
|
||||
apiKey: modelConfig.apiKey,
|
||||
baseURL: modelConfig.baseURL, // DeepSeek API 的基础URL
|
||||
});
|
||||
|
||||
const prompt = shedulerAI.custom_prompt;
|
||||
|
||||
try {
|
||||
const completion = await openai.chat.completions.create({
|
||||
model: shedulerAI.model,
|
||||
messages: [
|
||||
{ role: "user", content: prompt }
|
||||
],
|
||||
});
|
||||
|
||||
const matchedTags = completion.choices[0].message.content?.split(',').map(tag => tag.trim()) || [];
|
||||
return matchedTags;
|
||||
} catch (error) {
|
||||
console.error('AI分析失败:', error);
|
||||
return [];
|
||||
}
|
||||
}
|
||||
|
||||
async function scheduleAIResponses(
|
||||
message: string,
|
||||
history: MessageHistory[],
|
||||
availableAIs: AICharacter[]
|
||||
): Promise<string[]> {
|
||||
// 1. 收集所有可用的标签
|
||||
const allTags = new Set<string>();
|
||||
availableAIs.forEach(ai => {
|
||||
ai.tags?.forEach(tag => allTags.add(tag));
|
||||
});
|
||||
|
||||
// 2. 使用AI模型分析消息并匹配标签
|
||||
const matchedTags = await analyzeMessageWithAI(message, Array.from(allTags));
|
||||
|
||||
// 3. 计算每个AI的匹配分数
|
||||
const aiScores = new Map<string, number>();
|
||||
const messageLC = message.toLowerCase();
|
||||
|
||||
for (const ai of availableAIs) {
|
||||
if (!ai.tags) continue;
|
||||
|
||||
let score = 0;
|
||||
// 标签匹配分数
|
||||
matchedTags.forEach(tag => {
|
||||
if (ai.tags?.includes(tag)) {
|
||||
score += 2; // 每个匹配的标签得2分
|
||||
}
|
||||
});
|
||||
|
||||
// 直接提到AI名字额外加分
|
||||
if (messageLC.includes(ai.name.toLowerCase())) {
|
||||
score += 5;
|
||||
}
|
||||
|
||||
// 历史对话相关性加分
|
||||
const recentHistory = history.slice(-5); // 只看最近5条消息
|
||||
recentHistory.forEach(hist => {
|
||||
if (hist.name === ai.name && hist.content.length > 0) {
|
||||
score += 1; // 最近有参与对话的AI加分
|
||||
}
|
||||
});
|
||||
|
||||
if (score > 0) {
|
||||
aiScores.set(ai.id, score);
|
||||
}
|
||||
}
|
||||
|
||||
// 4. 根据分数排序选择AI
|
||||
const sortedAIs = Array.from(aiScores.entries())
|
||||
.sort((a, b) => b[1] - a[1])
|
||||
.map(([id]) => id);
|
||||
|
||||
// 5. 如果没有匹配到任何AI,随机选择1-2个
|
||||
if (sortedAIs.length === 0) {
|
||||
const maxResponders = Math.min(2, availableAIs.length);
|
||||
const numResponders = Math.floor(Math.random() * maxResponders) + 1;
|
||||
|
||||
const shuffledAIs = [...availableAIs]
|
||||
.sort(() => Math.random() - 0.5)
|
||||
.slice(0, numResponders);
|
||||
|
||||
return shuffledAIs.map(ai => ai.id);
|
||||
}
|
||||
|
||||
// 6. 限制最大回复数量
|
||||
const MAX_RESPONDERS = 3;
|
||||
return sortedAIs.slice(0, MAX_RESPONDERS);
|
||||
}
|
||||
Reference in New Issue
Block a user