Remove 02.6.md spaces
This commit is contained in:
508
zh/02.6.md
508
zh/02.6.md
@@ -16,73 +16,73 @@ Go语言里面设计最精妙的应该算interface,它让面向对象,内容
|
||||
interface类型定义了一组方法,如果某个对象实现了某个接口的所有方法,则此对象就实现了此接口。详细的语法参考下面这个例子
|
||||
```Go
|
||||
|
||||
type Human struct {
|
||||
name string
|
||||
age int
|
||||
phone string
|
||||
}
|
||||
type Human struct {
|
||||
name string
|
||||
age int
|
||||
phone string
|
||||
}
|
||||
|
||||
type Student struct {
|
||||
Human //匿名字段Human
|
||||
school string
|
||||
loan float32
|
||||
}
|
||||
type Student struct {
|
||||
Human //匿名字段Human
|
||||
school string
|
||||
loan float32
|
||||
}
|
||||
|
||||
type Employee struct {
|
||||
Human //匿名字段Human
|
||||
company string
|
||||
money float32
|
||||
}
|
||||
type Employee struct {
|
||||
Human //匿名字段Human
|
||||
company string
|
||||
money float32
|
||||
}
|
||||
|
||||
//Human对象实现Sayhi方法
|
||||
func (h *Human) SayHi() {
|
||||
fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)
|
||||
}
|
||||
//Human对象实现Sayhi方法
|
||||
func (h *Human) SayHi() {
|
||||
fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)
|
||||
}
|
||||
|
||||
// Human对象实现Sing方法
|
||||
func (h *Human) Sing(lyrics string) {
|
||||
fmt.Println("La la, la la la, la la la la la...", lyrics)
|
||||
}
|
||||
// Human对象实现Sing方法
|
||||
func (h *Human) Sing(lyrics string) {
|
||||
fmt.Println("La la, la la la, la la la la la...", lyrics)
|
||||
}
|
||||
|
||||
//Human对象实现Guzzle方法
|
||||
func (h *Human) Guzzle(beerStein string) {
|
||||
fmt.Println("Guzzle Guzzle Guzzle...", beerStein)
|
||||
}
|
||||
//Human对象实现Guzzle方法
|
||||
func (h *Human) Guzzle(beerStein string) {
|
||||
fmt.Println("Guzzle Guzzle Guzzle...", beerStein)
|
||||
}
|
||||
|
||||
// Employee重载Human的Sayhi方法
|
||||
func (e *Employee) SayHi() {
|
||||
fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,
|
||||
e.company, e.phone) //此句可以分成多行
|
||||
}
|
||||
// Employee重载Human的Sayhi方法
|
||||
func (e *Employee) SayHi() {
|
||||
fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,
|
||||
e.company, e.phone) //此句可以分成多行
|
||||
}
|
||||
|
||||
//Student实现BorrowMoney方法
|
||||
func (s *Student) BorrowMoney(amount float32) {
|
||||
s.loan += amount // (again and again and...)
|
||||
}
|
||||
//Student实现BorrowMoney方法
|
||||
func (s *Student) BorrowMoney(amount float32) {
|
||||
s.loan += amount // (again and again and...)
|
||||
}
|
||||
|
||||
//Employee实现SpendSalary方法
|
||||
func (e *Employee) SpendSalary(amount float32) {
|
||||
e.money -= amount // More vodka please!!! Get me through the day!
|
||||
}
|
||||
//Employee实现SpendSalary方法
|
||||
func (e *Employee) SpendSalary(amount float32) {
|
||||
e.money -= amount // More vodka please!!! Get me through the day!
|
||||
}
|
||||
|
||||
// 定义interface
|
||||
type Men interface {
|
||||
SayHi()
|
||||
Sing(lyrics string)
|
||||
Guzzle(beerStein string)
|
||||
}
|
||||
// 定义interface
|
||||
type Men interface {
|
||||
SayHi()
|
||||
Sing(lyrics string)
|
||||
Guzzle(beerStein string)
|
||||
}
|
||||
|
||||
type YoungChap interface {
|
||||
SayHi()
|
||||
Sing(song string)
|
||||
BorrowMoney(amount float32)
|
||||
}
|
||||
type YoungChap interface {
|
||||
SayHi()
|
||||
Sing(song string)
|
||||
BorrowMoney(amount float32)
|
||||
}
|
||||
|
||||
type ElderlyGent interface {
|
||||
SayHi()
|
||||
Sing(song string)
|
||||
SpendSalary(amount float32)
|
||||
}
|
||||
type ElderlyGent interface {
|
||||
SayHi()
|
||||
Sing(song string)
|
||||
SpendSalary(amount float32)
|
||||
}
|
||||
```
|
||||
通过上面的代码我们可以知道,interface可以被任意的对象实现。我们看到上面的Men interface被Human、Student和Employee实现。同理,一个对象可以实现任意多个interface,例如上面的Student实现了Men和YoungChap两个interface。
|
||||
|
||||
@@ -96,82 +96,82 @@ interface类型定义了一组方法,如果某个对象实现了某个接口
|
||||
让我们来看一下下面这个例子:
|
||||
```Go
|
||||
|
||||
package main
|
||||
package main
|
||||
|
||||
import "fmt"
|
||||
import "fmt"
|
||||
|
||||
type Human struct {
|
||||
name string
|
||||
age int
|
||||
phone string
|
||||
type Human struct {
|
||||
name string
|
||||
age int
|
||||
phone string
|
||||
}
|
||||
|
||||
type Student struct {
|
||||
Human //匿名字段
|
||||
school string
|
||||
loan float32
|
||||
}
|
||||
|
||||
type Employee struct {
|
||||
Human //匿名字段
|
||||
company string
|
||||
money float32
|
||||
}
|
||||
|
||||
//Human实现SayHi方法
|
||||
func (h Human) SayHi() {
|
||||
fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)
|
||||
}
|
||||
|
||||
//Human实现Sing方法
|
||||
func (h Human) Sing(lyrics string) {
|
||||
fmt.Println("La la la la...", lyrics)
|
||||
}
|
||||
|
||||
//Employee重载Human的SayHi方法
|
||||
func (e Employee) SayHi() {
|
||||
fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,
|
||||
e.company, e.phone)
|
||||
}
|
||||
|
||||
type Student struct {
|
||||
Human //匿名字段
|
||||
school string
|
||||
loan float32
|
||||
}
|
||||
|
||||
type Employee struct {
|
||||
Human //匿名字段
|
||||
company string
|
||||
money float32
|
||||
}
|
||||
|
||||
//Human实现SayHi方法
|
||||
func (h Human) SayHi() {
|
||||
fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)
|
||||
}
|
||||
|
||||
//Human实现Sing方法
|
||||
func (h Human) Sing(lyrics string) {
|
||||
fmt.Println("La la la la...", lyrics)
|
||||
}
|
||||
|
||||
//Employee重载Human的SayHi方法
|
||||
func (e Employee) SayHi() {
|
||||
fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,
|
||||
e.company, e.phone)
|
||||
}
|
||||
|
||||
// Interface Men被Human,Student和Employee实现
|
||||
// 因为这三个类型都实现了这两个方法
|
||||
type Men interface {
|
||||
SayHi()
|
||||
Sing(lyrics string)
|
||||
}
|
||||
|
||||
func main() {
|
||||
mike := Student{Human{"Mike", 25, "222-222-XXX"}, "MIT", 0.00}
|
||||
paul := Student{Human{"Paul", 26, "111-222-XXX"}, "Harvard", 100}
|
||||
sam := Employee{Human{"Sam", 36, "444-222-XXX"}, "Golang Inc.", 1000}
|
||||
tom := Employee{Human{"Tom", 37, "222-444-XXX"}, "Things Ltd.", 5000}
|
||||
|
||||
//定义Men类型的变量i
|
||||
var i Men
|
||||
|
||||
//i能存储Student
|
||||
i = mike
|
||||
fmt.Println("This is Mike, a Student:")
|
||||
i.SayHi()
|
||||
i.Sing("November rain")
|
||||
|
||||
//i也能存储Employee
|
||||
i = tom
|
||||
fmt.Println("This is tom, an Employee:")
|
||||
i.SayHi()
|
||||
i.Sing("Born to be wild")
|
||||
|
||||
//定义了slice Men
|
||||
fmt.Println("Let's use a slice of Men and see what happens")
|
||||
x := make([]Men, 3)
|
||||
//这三个都是不同类型的元素,但是他们实现了interface同一个接口
|
||||
x[0], x[1], x[2] = paul, sam, mike
|
||||
|
||||
for _, value := range x{
|
||||
value.SayHi()
|
||||
}
|
||||
// Interface Men被Human,Student和Employee实现
|
||||
// 因为这三个类型都实现了这两个方法
|
||||
type Men interface {
|
||||
SayHi()
|
||||
Sing(lyrics string)
|
||||
}
|
||||
|
||||
func main() {
|
||||
mike := Student{Human{"Mike", 25, "222-222-XXX"}, "MIT", 0.00}
|
||||
paul := Student{Human{"Paul", 26, "111-222-XXX"}, "Harvard", 100}
|
||||
sam := Employee{Human{"Sam", 36, "444-222-XXX"}, "Golang Inc.", 1000}
|
||||
tom := Employee{Human{"Tom", 37, "222-444-XXX"}, "Things Ltd.", 5000}
|
||||
|
||||
//定义Men类型的变量i
|
||||
var i Men
|
||||
|
||||
//i能存储Student
|
||||
i = mike
|
||||
fmt.Println("This is Mike, a Student:")
|
||||
i.SayHi()
|
||||
i.Sing("November rain")
|
||||
|
||||
//i也能存储Employee
|
||||
i = tom
|
||||
fmt.Println("This is tom, an Employee:")
|
||||
i.SayHi()
|
||||
i.Sing("Born to be wild")
|
||||
|
||||
//定义了slice Men
|
||||
fmt.Println("Let's use a slice of Men and see what happens")
|
||||
x := make([]Men, 3)
|
||||
//这三个都是不同类型的元素,但是他们实现了interface同一个接口
|
||||
x[0], x[1], x[2] = paul, sam, mike
|
||||
|
||||
for _, value := range x{
|
||||
value.SayHi()
|
||||
}
|
||||
}
|
||||
```
|
||||
通过上面的代码,你会发现interface就是一组抽象方法的集合,它必须由其他非interface类型实现,而不能自我实现, Go通过interface实现了duck-typing:即"当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子"。
|
||||
|
||||
@@ -179,13 +179,13 @@ interface类型定义了一组方法,如果某个对象实现了某个接口
|
||||
空interface(interface{})不包含任何的method,正因为如此,所有的类型都实现了空interface。空interface对于描述起不到任何的作用(因为它不包含任何的method),但是空interface在我们需要存储任意类型的数值的时候相当有用,因为它可以存储任意类型的数值。它有点类似于C语言的void*类型。
|
||||
```Go
|
||||
|
||||
// 定义a为空接口
|
||||
var a interface{}
|
||||
var i int = 5
|
||||
s := "Hello world"
|
||||
// a可以存储任意类型的数值
|
||||
a = i
|
||||
a = s
|
||||
// 定义a为空接口
|
||||
var a interface{}
|
||||
var i int = 5
|
||||
s := "Hello world"
|
||||
// a可以存储任意类型的数值
|
||||
a = i
|
||||
a = s
|
||||
```
|
||||
一个函数把interface{}作为参数,那么他可以接受任意类型的值作为参数,如果一个函数返回interface{},那么也就可以返回任意类型的值。是不是很有用啊!
|
||||
### interface函数参数
|
||||
@@ -194,41 +194,41 @@ interface的变量可以持有任意实现该interface类型的对象,这给
|
||||
举个例子:fmt.Println是我们常用的一个函数,但是你是否注意到它可以接受任意类型的数据。打开fmt的源码文件,你会看到这样一个定义:
|
||||
```Go
|
||||
|
||||
type Stringer interface {
|
||||
String() string
|
||||
}
|
||||
type Stringer interface {
|
||||
String() string
|
||||
}
|
||||
```
|
||||
也就是说,任何实现了String方法的类型都能作为参数被fmt.Println调用,让我们来试一试
|
||||
```Go
|
||||
|
||||
package main
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
package main
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
type Human struct {
|
||||
name string
|
||||
age int
|
||||
phone string
|
||||
}
|
||||
type Human struct {
|
||||
name string
|
||||
age int
|
||||
phone string
|
||||
}
|
||||
|
||||
// 通过这个方法 Human 实现了 fmt.Stringer
|
||||
func (h Human) String() string {
|
||||
return "❰"+h.name+" - "+strconv.Itoa(h.age)+" years - ✆ " +h.phone+"❱"
|
||||
}
|
||||
// 通过这个方法 Human 实现了 fmt.Stringer
|
||||
func (h Human) String() string {
|
||||
return "❰"+h.name+" - "+strconv.Itoa(h.age)+" years - ✆ " +h.phone+"❱"
|
||||
}
|
||||
|
||||
func main() {
|
||||
Bob := Human{"Bob", 39, "000-7777-XXX"}
|
||||
fmt.Println("This Human is : ", Bob)
|
||||
}
|
||||
func main() {
|
||||
Bob := Human{"Bob", 39, "000-7777-XXX"}
|
||||
fmt.Println("This Human is : ", Bob)
|
||||
}
|
||||
```
|
||||
现在我们再回顾一下前面的Box示例,你会发现Color结构也定义了一个method:String。其实这也是实现了fmt.Stringer这个interface,即如果需要某个类型能被fmt包以特殊的格式输出,你就必须实现Stringer这个接口。如果没有实现这个接口,fmt将以默认的方式输出。
|
||||
```Go
|
||||
|
||||
//实现同样的功能
|
||||
fmt.Println("The biggest one is", boxes.BiggestsColor().String())
|
||||
fmt.Println("The biggest one is", boxes.BiggestsColor())
|
||||
//实现同样的功能
|
||||
fmt.Println("The biggest one is", boxes.BiggestsColor().String())
|
||||
fmt.Println("The biggest one is", boxes.BiggestsColor())
|
||||
```
|
||||
注:实现了error接口的对象(即实现了Error() string的对象),使用fmt输出时,会调用Error()方法,因此不必再定义String()方法了。
|
||||
### interface变量存储的类型
|
||||
@@ -244,44 +244,44 @@ interface的变量可以持有任意实现该interface类型的对象,这给
|
||||
让我们通过一个例子来更加深入的理解。
|
||||
```Go
|
||||
|
||||
package main
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
type Element interface{}
|
||||
type List [] Element
|
||||
type Element interface{}
|
||||
type List [] Element
|
||||
|
||||
type Person struct {
|
||||
name string
|
||||
age int
|
||||
}
|
||||
type Person struct {
|
||||
name string
|
||||
age int
|
||||
}
|
||||
|
||||
//定义了String方法,实现了fmt.Stringer
|
||||
func (p Person) String() string {
|
||||
return "(name: " + p.name + " - age: "+strconv.Itoa(p.age)+ " years)"
|
||||
}
|
||||
//定义了String方法,实现了fmt.Stringer
|
||||
func (p Person) String() string {
|
||||
return "(name: " + p.name + " - age: "+strconv.Itoa(p.age)+ " years)"
|
||||
}
|
||||
|
||||
func main() {
|
||||
list := make(List, 3)
|
||||
list[0] = 1 // an int
|
||||
list[1] = "Hello" // a string
|
||||
list[2] = Person{"Dennis", 70}
|
||||
func main() {
|
||||
list := make(List, 3)
|
||||
list[0] = 1 // an int
|
||||
list[1] = "Hello" // a string
|
||||
list[2] = Person{"Dennis", 70}
|
||||
|
||||
for index, element := range list {
|
||||
if value, ok := element.(int); ok {
|
||||
fmt.Printf("list[%d] is an int and its value is %d\n", index, value)
|
||||
} else if value, ok := element.(string); ok {
|
||||
fmt.Printf("list[%d] is a string and its value is %s\n", index, value)
|
||||
} else if value, ok := element.(Person); ok {
|
||||
fmt.Printf("list[%d] is a Person and its value is %s\n", index, value)
|
||||
} else {
|
||||
fmt.Printf("list[%d] is of a different type\n", index)
|
||||
}
|
||||
for index, element := range list {
|
||||
if value, ok := element.(int); ok {
|
||||
fmt.Printf("list[%d] is an int and its value is %d\n", index, value)
|
||||
} else if value, ok := element.(string); ok {
|
||||
fmt.Printf("list[%d] is a string and its value is %s\n", index, value)
|
||||
} else if value, ok := element.(Person); ok {
|
||||
fmt.Printf("list[%d] is a Person and its value is %s\n", index, value)
|
||||
} else {
|
||||
fmt.Printf("list[%d] is of a different type\n", index)
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
是不是很简单啊,同时你是否注意到了多个if里面,还记得我前面介绍流程时讲过,if里面允许初始化变量。
|
||||
|
||||
@@ -291,45 +291,45 @@ interface的变量可以持有任意实现该interface类型的对象,这给
|
||||
最好的讲解就是代码例子,现在让我们重写上面的这个实现
|
||||
```Go
|
||||
|
||||
package main
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
import (
|
||||
"fmt"
|
||||
"strconv"
|
||||
)
|
||||
|
||||
type Element interface{}
|
||||
type List [] Element
|
||||
type Element interface{}
|
||||
type List [] Element
|
||||
|
||||
type Person struct {
|
||||
name string
|
||||
age int
|
||||
}
|
||||
type Person struct {
|
||||
name string
|
||||
age int
|
||||
}
|
||||
|
||||
//打印
|
||||
func (p Person) String() string {
|
||||
return "(name: " + p.name + " - age: "+strconv.Itoa(p.age)+ " years)"
|
||||
}
|
||||
//打印
|
||||
func (p Person) String() string {
|
||||
return "(name: " + p.name + " - age: "+strconv.Itoa(p.age)+ " years)"
|
||||
}
|
||||
|
||||
func main() {
|
||||
list := make(List, 3)
|
||||
list[0] = 1 //an int
|
||||
list[1] = "Hello" //a string
|
||||
list[2] = Person{"Dennis", 70}
|
||||
func main() {
|
||||
list := make(List, 3)
|
||||
list[0] = 1 //an int
|
||||
list[1] = "Hello" //a string
|
||||
list[2] = Person{"Dennis", 70}
|
||||
|
||||
for index, element := range list{
|
||||
switch value := element.(type) {
|
||||
case int:
|
||||
fmt.Printf("list[%d] is an int and its value is %d\n", index, value)
|
||||
case string:
|
||||
fmt.Printf("list[%d] is a string and its value is %s\n", index, value)
|
||||
case Person:
|
||||
fmt.Printf("list[%d] is a Person and its value is %s\n", index, value)
|
||||
default:
|
||||
fmt.Println("list[%d] is of a different type", index)
|
||||
}
|
||||
for index, element := range list{
|
||||
switch value := element.(type) {
|
||||
case int:
|
||||
fmt.Printf("list[%d] is an int and its value is %d\n", index, value)
|
||||
case string:
|
||||
fmt.Printf("list[%d] is a string and its value is %s\n", index, value)
|
||||
case Person:
|
||||
fmt.Printf("list[%d] is a Person and its value is %s\n", index, value)
|
||||
default:
|
||||
fmt.Println("list[%d] is of a different type", index)
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
这里有一点需要强调的是:`element.(type)`语法不能在switch外的任何逻辑里面使用,如果你要在switch外面判断一个类型就使用`comma-ok`。
|
||||
|
||||
@@ -339,33 +339,33 @@ Go里面真正吸引人的是它内置的逻辑语法,就像我们在学习Str
|
||||
我们可以看到源码包container/heap里面有这样的一个定义
|
||||
```Go
|
||||
|
||||
type Interface interface {
|
||||
sort.Interface //嵌入字段sort.Interface
|
||||
Push(x interface{}) //a Push method to push elements into the heap
|
||||
Pop() interface{} //a Pop elements that pops elements from the heap
|
||||
}
|
||||
type Interface interface {
|
||||
sort.Interface //嵌入字段sort.Interface
|
||||
Push(x interface{}) //a Push method to push elements into the heap
|
||||
Pop() interface{} //a Pop elements that pops elements from the heap
|
||||
}
|
||||
```
|
||||
我们看到sort.Interface其实就是嵌入字段,把sort.Interface的所有method给隐式的包含进来了。也就是下面三个方法:
|
||||
```Go
|
||||
|
||||
type Interface interface {
|
||||
// Len is the number of elements in the collection.
|
||||
Len() int
|
||||
// Less returns whether the element with index i should sort
|
||||
// before the element with index j.
|
||||
Less(i, j int) bool
|
||||
// Swap swaps the elements with indexes i and j.
|
||||
Swap(i, j int)
|
||||
}
|
||||
type Interface interface {
|
||||
// Len is the number of elements in the collection.
|
||||
Len() int
|
||||
// Less returns whether the element with index i should sort
|
||||
// before the element with index j.
|
||||
Less(i, j int) bool
|
||||
// Swap swaps the elements with indexes i and j.
|
||||
Swap(i, j int)
|
||||
}
|
||||
```
|
||||
另一个例子就是io包下面的 io.ReadWriter ,它包含了io包下面的Reader和Writer两个interface:
|
||||
```Go
|
||||
|
||||
// io.ReadWriter
|
||||
type ReadWriter interface {
|
||||
Reader
|
||||
Writer
|
||||
}
|
||||
// io.ReadWriter
|
||||
type ReadWriter interface {
|
||||
Reader
|
||||
Writer
|
||||
}
|
||||
```
|
||||
### 反射
|
||||
Go语言实现了反射,所谓反射就是能检查程序在运行时的状态。我们一般用到的包是reflect包。如何运用reflect包,官方的这篇文章详细的讲解了reflect包的实现原理,[laws of reflection](http://golang.org/doc/articles/laws_of_reflection.html)
|
||||
@@ -373,38 +373,38 @@ Go语言实现了反射,所谓反射就是能检查程序在运行时的状态
|
||||
使用reflect一般分成三步,下面简要的讲解一下:要去反射是一个类型的值(这些值都实现了空interface),首先需要把它转化成reflect对象(reflect.Type或者reflect.Value,根据不同的情况调用不同的函数)。这两种获取方式如下:
|
||||
```Go
|
||||
|
||||
t := reflect.TypeOf(i) //得到类型的元数据,通过t我们能获取类型定义里面的所有元素
|
||||
v := reflect.ValueOf(i) //得到实际的值,通过v我们获取存储在里面的值,还可以去改变值
|
||||
t := reflect.TypeOf(i) //得到类型的元数据,通过t我们能获取类型定义里面的所有元素
|
||||
v := reflect.ValueOf(i) //得到实际的值,通过v我们获取存储在里面的值,还可以去改变值
|
||||
```
|
||||
转化为reflect对象之后我们就可以进行一些操作了,也就是将reflect对象转化成相应的值,例如
|
||||
```Go
|
||||
|
||||
tag := t.Elem().Field(0).Tag //获取定义在struct里面的标签
|
||||
name := v.Elem().Field(0).String() //获取存储在第一个字段里面的值
|
||||
tag := t.Elem().Field(0).Tag //获取定义在struct里面的标签
|
||||
name := v.Elem().Field(0).String() //获取存储在第一个字段里面的值
|
||||
```
|
||||
获取反射值能返回相应的类型和数值
|
||||
```Go
|
||||
|
||||
var x float64 = 3.4
|
||||
v := reflect.ValueOf(x)
|
||||
fmt.Println("type:", v.Type())
|
||||
fmt.Println("kind is float64:", v.Kind() == reflect.Float64)
|
||||
fmt.Println("value:", v.Float())
|
||||
var x float64 = 3.4
|
||||
v := reflect.ValueOf(x)
|
||||
fmt.Println("type:", v.Type())
|
||||
fmt.Println("kind is float64:", v.Kind() == reflect.Float64)
|
||||
fmt.Println("value:", v.Float())
|
||||
```
|
||||
最后,反射的话,那么反射的字段必须是可修改的,我们前面学习过传值和传引用,这个里面也是一样的道理。反射的字段必须是可读写的意思是,如果下面这样写,那么会发生错误
|
||||
```Go
|
||||
|
||||
var x float64 = 3.4
|
||||
v := reflect.ValueOf(x)
|
||||
v.SetFloat(7.1)
|
||||
var x float64 = 3.4
|
||||
v := reflect.ValueOf(x)
|
||||
v.SetFloat(7.1)
|
||||
```
|
||||
如果要修改相应的值,必须这样写
|
||||
```Go
|
||||
|
||||
var x float64 = 3.4
|
||||
p := reflect.ValueOf(&x)
|
||||
v := p.Elem()
|
||||
v.SetFloat(7.1)
|
||||
var x float64 = 3.4
|
||||
p := reflect.ValueOf(&x)
|
||||
v := p.Elem()
|
||||
v.SetFloat(7.1)
|
||||
```
|
||||
上面只是对反射的简单介绍,更深入的理解还需要自己在编程中不断的实践。
|
||||
|
||||
|
||||
Reference in New Issue
Block a user