fixed markdown format
This commit is contained in:
20
2.6.md
20
2.6.md
@@ -1,8 +1,8 @@
|
||||
#2.6interface
|
||||
# 2.6interface
|
||||
|
||||
##interface
|
||||
## interface
|
||||
Go语言里面设计最精妙的应该算interface,它让面向对象,内容组织实现非常的方便,当你看完这一章,你就会被interface的巧妙设计所折服。
|
||||
###什么是interface
|
||||
### 什么是interface
|
||||
简单的说,interface是一组method的组合,我们通过interface来定义对象的一组行为。
|
||||
|
||||
我们前面一章最后一个例子中Student和Employee都能Sayhi,虽然他们的内部实现不一样,但是那不重要,重要的是他们都能`say hi`
|
||||
@@ -12,7 +12,7 @@ Go语言里面设计最精妙的应该算interface,它让面向对象,内容
|
||||
这样Student实现了三个方法:Sayhi、Sing、BorrowMoney;而Employee实现了Sayhi、Sing、SpendSalary。
|
||||
|
||||
上面这些方法的组合称为interface(被对象Student和Employee实现)。例如Student和Employee都实现了interface:Sayhi和Sing,也就是这两个对象是该interface类型。而Employee没有实现这个interface:Sayhi、Sing和BorrowMoney,因为Employee没有实现BorrowMoney这个方法。
|
||||
###interface类型
|
||||
### interface类型
|
||||
interface类型定义了一组方法,如果某个对象实现了某个接口的所有方法,则此对象就实现了此接口。详细的语法参考下面这个例子
|
||||
|
||||
type Human struct {
|
||||
@@ -87,7 +87,7 @@ interface类型定义了一组方法,如果某个对象实现了某个接口
|
||||
|
||||
最后,任意的类型都实现了空interface(我们这样定义:interface{}),也就是包含0个method的interface。
|
||||
|
||||
###interface值
|
||||
### interface值
|
||||
那么interface里面到底能存什么值呢?如果我们定义了一个interface的变量,那么这个变量里面可以存实现这个interface的任意类型的对象。例如上面例子中,我们定义了一个Men interface类型的变量m,那么m里面可以存Human、Student或者Employee值。
|
||||
|
||||
因为m能够持有这三种类型的对象,所以我们可以定义一个包含Men类型元素的slice,这个slice可以被赋予实现了Men接口的任意结构的对象,这个和我们传统意义上面的slice有所不同。
|
||||
@@ -172,7 +172,7 @@ interface类型定义了一组方法,如果某个对象实现了某个接口
|
||||
|
||||
通过上面的代码,你会发现interface就是一组抽象方法的集合,它必须由其他非interface类型实现,而不能自我实现, go 通过interface实现了duck-typing:即"当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子"。
|
||||
|
||||
###空interface
|
||||
### 空interface
|
||||
空interface(interface{})不包含任何的method,正因为如此,所有的类型都实现了空interface。空interface对于描述起不到任何的作用(因为它不包含任何的method),但是空interface在我们需要存储任意类型的数值的时候相当有用,因为它可以存储任意类型的数值。它有点类似于C语言的void*类型。
|
||||
|
||||
// 定义a为空接口
|
||||
@@ -184,7 +184,7 @@ interface类型定义了一组方法,如果某个对象实现了某个接口
|
||||
a = s
|
||||
|
||||
一个函数把interface{}作为参数,那么他可以接受任意类型的值作为参数,如果一个函数返回interface{},那么也就可以返回任意类型的值。是不是很有用啊!
|
||||
###interface函数参数
|
||||
### interface函数参数
|
||||
interface的变量可以持有任意实现该interface类型的对象,这给我们编写函数(包括method)提供了一些额外的思考,我们是不是可以通过定义interface参数,让函数接受各种类型的参数。
|
||||
|
||||
举个例子:我们已经知道fmt.Println是我们常用的一个函数,但是你是否注意到它可以接受任意类型的数据。打开fmt的源码文件,你会看到这样一个定义:
|
||||
@@ -222,7 +222,7 @@ interface的变量可以持有任意实现该interface类型的对象,这给
|
||||
fmt.Println("The biggest one is", boxes.BiggestsColor())
|
||||
|
||||
注:实现了error接口的对象(即实现了Error() string的对象),使用fmt输出时,会调用Error()方法,因此不必再定义String()方法了。
|
||||
###interface变量存储的类型
|
||||
### interface变量存储的类型
|
||||
|
||||
我们知道interface的变量里面可以存储任意类型的数值(该类型实现了interface)。那么我们怎么反向知道这个变量里面实际保存了的是哪个类型的对象呢?目前常用的有两种方法:
|
||||
|
||||
@@ -322,7 +322,7 @@ interface的变量可以持有任意实现该interface类型的对象,这给
|
||||
|
||||
这里有一点需要强调的是:`element.(type)`语法不能在switch外的任何逻辑里面使用,如果你要在switch外面判断一个类型就使用`comma-ok`。
|
||||
|
||||
###嵌入interface
|
||||
### 嵌入interface
|
||||
Go里面真正吸引人的是他内置的逻辑语法,就像我们在学习Struct时学习的匿名字段,多么的优雅啊,那么相同的逻辑引入到interface里面,那不是更加完美了。如果一个interface1作为interface2的一个嵌入字段,那么interface2隐式的包含了interface1里面的method。
|
||||
|
||||
我们可以看到源码包container/heap里面有这样的一个定义
|
||||
@@ -353,7 +353,7 @@ Go里面真正吸引人的是他内置的逻辑语法,就像我们在学习Str
|
||||
Writer
|
||||
}
|
||||
|
||||
###反射
|
||||
### 反射
|
||||
Go语言实现了反射,所谓反射就是动态运行时的状态。我们一般用到的包是reflect包。如何运用reflect包,官方的这篇文章详细的讲解了reflect包的实现原理,[laws of reflection](http://golang.org/doc/articles/laws_of_reflection.html)
|
||||
|
||||
下面我简要的讲解一下一般的使用,我们使用reflect大概的分成三步,首先我们要去反射是一个类型的值(这些值都实现了空interface),需要把它转化成reflect对象(reflect.Type或者reflect.Value,根据不同的情况调用不同的函数)。这两种获取方式如下:
|
||||
|
||||
Reference in New Issue
Block a user