# LangChain4j AI Sample Project This is a sample AI application project based on LangChain4j, featuring multiple modules that demonstrate how to develop using large language models. ## Project Structure The project consists of multiple modules, each demonstrating a different feature: - `langchain4j-ai-helloworld`: A beginner example showing how to perform simple conversations using a large language model. - `langchain4j-ai-image`: An image processing example demonstrating the use of image models. - `langchain4j-ai-low-high-api`: Demonstrates the use of low-level and high-level APIs. - `langchain4j-ai-memory`: A memory management example showing how to use chat memory. - `langchain4j-ai-model-params`: An example of configuring model parameters. - `langchain4j-ai-mongodb`: An example of storing chat memory using MongoDB. - `langchain4j-ai-multimode`: An example of calling multiple models. - `langchain4j-ai-pinecone`: An example of storing embeddings using Pinecone. - `langchain4j-ai-prompt`: An example of using prompt templates. - `langchain4j-ai-rag`: An RAG (Retrieval-Augmented Generation) example. - `langchain4j-ai-stream`: An example of handling streaming responses. - `langchain4j-ai-tools`: An example of integrating tools, such as weather queries. - `langchain4j-ai-xiaoai-agent`: A XiaoAI intelligent assistant example integrating multiple features. ## Installation Ensure you have Java and Maven installed. Then clone the repository and build the project: ```bash git clone https://gitee.com/pu13398199549/langchain4j-ai-java.git cd langchain4j-ai-java mvn clean install ``` ## Usage Each module can be run independently. For example, to run the `langchain4j-ai-helloworld` module: ```bash cd langchain4j-ai-helloworld mvn spring-boot:run ``` Visit `http://localhost:8080/langchain4j/hello` to view the sample output. ## Contribution Contributions and suggestions are welcome. Please submit a Pull Request or Issue. ## License This project is licensed under the MIT License. See the LICENSE file for details.