add directory gnu
This commit is contained in:
214
gnu/glibc/glibc-1.03/math/bsd/ieee/cabs.c
Normal file
214
gnu/glibc/glibc-1.03/math/bsd/ieee/cabs.c
Normal file
@@ -0,0 +1,214 @@
|
||||
/*
|
||||
* Copyright (c) 1985 Regents of the University of California.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms are permitted provided
|
||||
* that: (1) source distributions retain this entire copyright notice and
|
||||
* comment, and (2) distributions including binaries display the following
|
||||
* acknowledgement: ``This product includes software developed by the
|
||||
* University of California, Berkeley and its contributors'' in the
|
||||
* documentation or other materials provided with the distribution and in
|
||||
* all advertising materials mentioning features or use of this software.
|
||||
* Neither the name of the University nor the names of its contributors may
|
||||
* be used to endorse or promote products derived from this software without
|
||||
* specific prior written permission.
|
||||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*/
|
||||
|
||||
#ifndef lint
|
||||
static char sccsid[] = "@(#)cabs.c 5.6 (Berkeley) 10/9/90";
|
||||
#endif /* not lint */
|
||||
|
||||
/* HYPOT(X,Y)
|
||||
* RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
|
||||
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
|
||||
* CODED IN C BY K.C. NG, 11/28/84;
|
||||
* REVISED BY K.C. NG, 7/12/85.
|
||||
*
|
||||
* Required system supported functions :
|
||||
* copysign(x,y)
|
||||
* finite(x)
|
||||
* scalb(x,N)
|
||||
* sqrt(x)
|
||||
*
|
||||
* Method :
|
||||
* 1. replace x by |x| and y by |y|, and swap x and
|
||||
* y if y > x (hence x is never smaller than y).
|
||||
* 2. Hypot(x,y) is computed by:
|
||||
* Case I, x/y > 2
|
||||
*
|
||||
* y
|
||||
* hypot = x + -----------------------------
|
||||
* 2
|
||||
* sqrt ( 1 + [x/y] ) + x/y
|
||||
*
|
||||
* Case II, x/y <= 2
|
||||
* y
|
||||
* hypot = x + --------------------------------------------------
|
||||
* 2
|
||||
* [x/y] - 2
|
||||
* (sqrt(2)+1) + (x-y)/y + -----------------------------
|
||||
* 2
|
||||
* sqrt ( 1 + [x/y] ) + sqrt(2)
|
||||
*
|
||||
*
|
||||
*
|
||||
* Special cases:
|
||||
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
||||
* hypot(x,y) is NAN if x or y is NAN.
|
||||
*
|
||||
* Accuracy:
|
||||
* hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
|
||||
* in the last place). See Kahan's "Interval Arithmetic Options in the
|
||||
* Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
|
||||
* 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
|
||||
* code follows in comments.) In a test run with 500,000 random arguments
|
||||
* on a VAX, the maximum observed error was .959 ulps.
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following constants.
|
||||
* The decimal values may be used, provided that the compiler will convert
|
||||
* from decimal to binary accurately enough to produce the hexadecimal values
|
||||
* shown.
|
||||
*/
|
||||
#include "mathimpl.h"
|
||||
|
||||
vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32)
|
||||
vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
|
||||
vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
|
||||
|
||||
ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6)
|
||||
ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
|
||||
ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD)
|
||||
|
||||
#ifdef vccast
|
||||
#define r2p1hi vccast(r2p1hi)
|
||||
#define r2p1lo vccast(r2p1lo)
|
||||
#define sqrt2 vccast(sqrt2)
|
||||
#endif
|
||||
|
||||
double
|
||||
hypot(x,y)
|
||||
double x, y;
|
||||
{
|
||||
static const double zero=0, one=1,
|
||||
small=1.0E-18; /* fl(1+small)==1 */
|
||||
static const ibig=30; /* fl(1+2**(2*ibig))==1 */
|
||||
double t,r;
|
||||
int exp;
|
||||
|
||||
if(finite(x))
|
||||
if(finite(y))
|
||||
{
|
||||
x=copysign(x,one);
|
||||
y=copysign(y,one);
|
||||
if(y > x)
|
||||
{ t=x; x=y; y=t; }
|
||||
if(x == zero) return(zero);
|
||||
if(y == zero) return(x);
|
||||
exp= logb(x);
|
||||
if(exp-(int)logb(y) > ibig )
|
||||
/* raise inexact flag and return |x| */
|
||||
{ one+small; return(x); }
|
||||
|
||||
/* start computing sqrt(x^2 + y^2) */
|
||||
r=x-y;
|
||||
if(r>y) { /* x/y > 2 */
|
||||
r=x/y;
|
||||
r=r+sqrt(one+r*r); }
|
||||
else { /* 1 <= x/y <= 2 */
|
||||
r/=y; t=r*(r+2.0);
|
||||
r+=t/(sqrt2+sqrt(2.0+t));
|
||||
r+=r2p1lo; r+=r2p1hi; }
|
||||
|
||||
r=y/r;
|
||||
return(x+r);
|
||||
|
||||
}
|
||||
|
||||
else if(y==y) /* y is +-INF */
|
||||
return(copysign(y,one));
|
||||
else
|
||||
return(y); /* y is NaN and x is finite */
|
||||
|
||||
else if(x==x) /* x is +-INF */
|
||||
return (copysign(x,one));
|
||||
else if(finite(y))
|
||||
return(x); /* x is NaN, y is finite */
|
||||
#if !defined(vax)&&!defined(tahoe)
|
||||
else if(y!=y) return(y); /* x and y is NaN */
|
||||
#endif /* !defined(vax)&&!defined(tahoe) */
|
||||
else return(copysign(y,one)); /* y is INF */
|
||||
}
|
||||
|
||||
/* CABS(Z)
|
||||
* RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
|
||||
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
|
||||
* CODED IN C BY K.C. NG, 11/28/84.
|
||||
* REVISED BY K.C. NG, 7/12/85.
|
||||
*
|
||||
* Required kernel function :
|
||||
* hypot(x,y)
|
||||
*
|
||||
* Method :
|
||||
* cabs(z) = hypot(x,y) .
|
||||
*/
|
||||
|
||||
double
|
||||
cabs(z)
|
||||
struct/* { double x, y;}*/ __complex z;
|
||||
{
|
||||
return hypot(z.__x,z.__y);
|
||||
}
|
||||
|
||||
double
|
||||
z_abs(z)
|
||||
struct/* { double x,y;}*/ __complex *z;
|
||||
{
|
||||
return hypot(z->__x,z->__y);
|
||||
}
|
||||
|
||||
/* A faster but less accurate version of cabs(x,y) */
|
||||
#if 0
|
||||
double hypot(x,y)
|
||||
double x, y;
|
||||
{
|
||||
static const double zero=0, one=1;
|
||||
small=1.0E-18; /* fl(1+small)==1 */
|
||||
static const ibig=30; /* fl(1+2**(2*ibig))==1 */
|
||||
double temp;
|
||||
int exp;
|
||||
|
||||
if(finite(x))
|
||||
if(finite(y))
|
||||
{
|
||||
x=copysign(x,one);
|
||||
y=copysign(y,one);
|
||||
if(y > x)
|
||||
{ temp=x; x=y; y=temp; }
|
||||
if(x == zero) return(zero);
|
||||
if(y == zero) return(x);
|
||||
exp= logb(x);
|
||||
x=scalb(x,-exp);
|
||||
if(exp-(int)logb(y) > ibig )
|
||||
/* raise inexact flag and return |x| */
|
||||
{ one+small; return(scalb(x,exp)); }
|
||||
else y=scalb(y,-exp);
|
||||
return(scalb(sqrt(x*x+y*y),exp));
|
||||
}
|
||||
|
||||
else if(y==y) /* y is +-INF */
|
||||
return(copysign(y,one));
|
||||
else
|
||||
return(y); /* y is NaN and x is finite */
|
||||
|
||||
else if(x==x) /* x is +-INF */
|
||||
return (copysign(x,one));
|
||||
else if(finite(y))
|
||||
return(x); /* x is NaN, y is finite */
|
||||
else if(y!=y) return(y); /* x and y is NaN */
|
||||
else return(copysign(y,one)); /* y is INF */
|
||||
}
|
||||
#endif
|
||||
106
gnu/glibc/glibc-1.03/math/bsd/ieee/cbrt.c
Normal file
106
gnu/glibc/glibc-1.03/math/bsd/ieee/cbrt.c
Normal file
@@ -0,0 +1,106 @@
|
||||
/*
|
||||
* Copyright (c) 1985 Regents of the University of California.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms are permitted provided
|
||||
* that: (1) source distributions retain this entire copyright notice and
|
||||
* comment, and (2) distributions including binaries display the following
|
||||
* acknowledgement: ``This product includes software developed by the
|
||||
* University of California, Berkeley and its contributors'' in the
|
||||
* documentation or other materials provided with the distribution and in
|
||||
* all advertising materials mentioning features or use of this software.
|
||||
* Neither the name of the University nor the names of its contributors may
|
||||
* be used to endorse or promote products derived from this software without
|
||||
* specific prior written permission.
|
||||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*/
|
||||
|
||||
#ifndef lint
|
||||
static char sccsid[] = "@(#)cbrt.c 5.8 (Berkeley) 10/9/90";
|
||||
#endif /* not lint */
|
||||
|
||||
#include <sys/stdc.h>
|
||||
|
||||
/* kahan's cube root (53 bits IEEE double precision)
|
||||
* for IEEE machines only
|
||||
* coded in C by K.C. Ng, 4/30/85
|
||||
*
|
||||
* Accuracy:
|
||||
* better than 0.667 ulps according to an error analysis. Maximum
|
||||
* error observed was 0.666 ulps in an 1,000,000 random arguments test.
|
||||
*
|
||||
* Warning: this code is semi machine dependent; the ordering of words in
|
||||
* a floating point number must be known in advance. I assume that the
|
||||
* long interger at the address of a floating point number will be the
|
||||
* leading 32 bits of that floating point number (i.e., sign, exponent,
|
||||
* and the 20 most significant bits).
|
||||
* On a National machine, it has different ordering; therefore, this code
|
||||
* must be compiled with flag -DNATIONAL.
|
||||
*/
|
||||
#if !defined(vax)&&!defined(tahoe)
|
||||
|
||||
static const unsigned long
|
||||
B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */
|
||||
B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
|
||||
static const double
|
||||
C= 19./35.,
|
||||
D= -864./1225.,
|
||||
E= 99./70.,
|
||||
F= 45./28.,
|
||||
G= 5./14.;
|
||||
|
||||
double cbrt(x)
|
||||
double x;
|
||||
{
|
||||
double r,s,t=0.0,w;
|
||||
unsigned long *px = (unsigned long *) &x,
|
||||
*pt = (unsigned long *) &t,
|
||||
mexp,sign;
|
||||
|
||||
#ifdef national /* ordering of words in a floating points number */
|
||||
const int n0=1,n1=0;
|
||||
#else /* national */
|
||||
const int n0=0,n1=1;
|
||||
#endif /* national */
|
||||
|
||||
mexp=px[n0]&0x7ff00000;
|
||||
if(mexp==0x7ff00000) return(x); /* cbrt(NaN,INF) is itself */
|
||||
if(x==0.0) return(x); /* cbrt(0) is itself */
|
||||
|
||||
sign=px[n0]&0x80000000; /* sign= sign(x) */
|
||||
px[n0] ^= sign; /* x=|x| */
|
||||
|
||||
|
||||
/* rough cbrt to 5 bits */
|
||||
if(mexp==0) /* subnormal number */
|
||||
{pt[n0]=0x43500000; /* set t= 2**54 */
|
||||
t*=x; pt[n0]=pt[n0]/3+B2;
|
||||
}
|
||||
else
|
||||
pt[n0]=px[n0]/3+B1;
|
||||
|
||||
|
||||
/* new cbrt to 23 bits, may be implemented in single precision */
|
||||
r=t*t/x;
|
||||
s=C+r*t;
|
||||
t*=G+F/(s+E+D/s);
|
||||
|
||||
/* chopped to 20 bits and make it larger than cbrt(x) */
|
||||
pt[n1]=0; pt[n0]+=0x00000001;
|
||||
|
||||
|
||||
/* one step newton iteration to 53 bits with error less than 0.667 ulps */
|
||||
s=t*t; /* t*t is exact */
|
||||
r=x/s;
|
||||
w=t+t;
|
||||
r=(r-t)/(w+r); /* r-t is exact */
|
||||
t=t+t*r;
|
||||
|
||||
|
||||
/* retore the sign bit */
|
||||
pt[n0] |= sign;
|
||||
return(t);
|
||||
}
|
||||
#endif
|
||||
510
gnu/glibc/glibc-1.03/math/bsd/ieee/support.c
Normal file
510
gnu/glibc/glibc-1.03/math/bsd/ieee/support.c
Normal file
@@ -0,0 +1,510 @@
|
||||
/*
|
||||
* Copyright (c) 1985 Regents of the University of California.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms are permitted provided
|
||||
* that: (1) source distributions retain this entire copyright notice and
|
||||
* comment, and (2) distributions including binaries display the following
|
||||
* acknowledgement: ``This product includes software developed by the
|
||||
* University of California, Berkeley and its contributors'' in the
|
||||
* documentation or other materials provided with the distribution and in
|
||||
* all advertising materials mentioning features or use of this software.
|
||||
* Neither the name of the University nor the names of its contributors may
|
||||
* be used to endorse or promote products derived from this software without
|
||||
* specific prior written permission.
|
||||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*/
|
||||
|
||||
#ifndef lint
|
||||
static char sccsid[] = "@(#)support.c 5.6 (Berkeley) 10/9/90";
|
||||
#endif /* not lint */
|
||||
|
||||
/*
|
||||
* Some IEEE standard 754 recommended functions and remainder and sqrt for
|
||||
* supporting the C elementary functions.
|
||||
******************************************************************************
|
||||
* WARNING:
|
||||
* These codes are developed (in double) to support the C elementary
|
||||
* functions temporarily. They are not universal, and some of them are very
|
||||
* slow (in particular, drem and sqrt is extremely inefficient). Each
|
||||
* computer system should have its implementation of these functions using
|
||||
* its own assembler.
|
||||
******************************************************************************
|
||||
*
|
||||
* IEEE 754 required operations:
|
||||
* drem(x,p)
|
||||
* returns x REM y = x - [x/y]*y , where [x/y] is the integer
|
||||
* nearest x/y; in half way case, choose the even one.
|
||||
* sqrt(x)
|
||||
* returns the square root of x correctly rounded according to
|
||||
* the rounding mod.
|
||||
*
|
||||
* IEEE 754 recommended functions:
|
||||
* (a) copysign(x,y)
|
||||
* returns x with the sign of y.
|
||||
* (b) scalb(x,N)
|
||||
* returns x * (2**N), for integer values N.
|
||||
* (c) logb(x)
|
||||
* returns the unbiased exponent of x, a signed integer in
|
||||
* double precision, except that logb(0) is -INF, logb(INF)
|
||||
* is +INF, and logb(NAN) is that NAN.
|
||||
* (d) finite(x)
|
||||
* returns the value TRUE if -INF < x < +INF and returns
|
||||
* FALSE otherwise.
|
||||
*
|
||||
*
|
||||
* CODED IN C BY K.C. NG, 11/25/84;
|
||||
* REVISED BY K.C. NG on 1/22/85, 2/13/85, 3/24/85.
|
||||
*/
|
||||
|
||||
#include "mathimpl.h"
|
||||
|
||||
#if defined(vax)||defined(tahoe) /* VAX D format */
|
||||
#include <errno.h>
|
||||
static const unsigned short msign=0x7fff , mexp =0x7f80 ;
|
||||
static const short prep1=57, gap=7, bias=129 ;
|
||||
static const double novf=1.7E38, nunf=3.0E-39, zero=0.0 ;
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
static const unsigned short msign=0x7fff, mexp =0x7ff0 ;
|
||||
static const short prep1=54, gap=4, bias=1023 ;
|
||||
static const double novf=1.7E308, nunf=3.0E-308,zero=0.0;
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
|
||||
double scalb(x,N)
|
||||
double x; int N;
|
||||
{
|
||||
int k;
|
||||
|
||||
#ifdef national
|
||||
unsigned short *px=(unsigned short *) &x + 3;
|
||||
#else /* national */
|
||||
unsigned short *px=(unsigned short *) &x;
|
||||
#endif /* national */
|
||||
|
||||
if( x == zero ) return(x);
|
||||
|
||||
#if defined(vax)||defined(tahoe)
|
||||
if( (k= *px & mexp ) != ~msign ) {
|
||||
if (N < -260)
|
||||
return(nunf*nunf);
|
||||
else if (N > 260) {
|
||||
return(copysign(infnan(ERANGE),x));
|
||||
}
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
if( (k= *px & mexp ) != mexp ) {
|
||||
if( N<-2100) return(nunf*nunf); else if(N>2100) return(novf+novf);
|
||||
if( k == 0 ) {
|
||||
x *= scalb(1.0,(int)prep1); N -= prep1; return(scalb(x,N));}
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
|
||||
if((k = (k>>gap)+ N) > 0 )
|
||||
if( k < (mexp>>gap) ) *px = (*px&~mexp) | (k<<gap);
|
||||
else x=novf+novf; /* overflow */
|
||||
else
|
||||
if( k > -prep1 )
|
||||
/* gradual underflow */
|
||||
{*px=(*px&~mexp)|(short)(1<<gap); x *= scalb(1.0,k-1);}
|
||||
else
|
||||
return(nunf*nunf);
|
||||
}
|
||||
return(x);
|
||||
}
|
||||
|
||||
|
||||
double copysign(x,y)
|
||||
double x,y;
|
||||
{
|
||||
#ifdef national
|
||||
unsigned short *px=(unsigned short *) &x+3,
|
||||
*py=(unsigned short *) &y+3;
|
||||
#else /* national */
|
||||
unsigned short *px=(unsigned short *) &x,
|
||||
*py=(unsigned short *) &y;
|
||||
#endif /* national */
|
||||
|
||||
#if defined(vax)||defined(tahoe)
|
||||
if ( (*px & mexp) == 0 ) return(x);
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
|
||||
*px = ( *px & msign ) | ( *py & ~msign );
|
||||
return(x);
|
||||
}
|
||||
|
||||
double logb(x)
|
||||
double x;
|
||||
{
|
||||
|
||||
#ifdef national
|
||||
short *px=(short *) &x+3, k;
|
||||
#else /* national */
|
||||
short *px=(short *) &x, k;
|
||||
#endif /* national */
|
||||
|
||||
#if defined(vax)||defined(tahoe)
|
||||
return (int)(((*px&mexp)>>gap)-bias);
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
if( (k= *px & mexp ) != mexp )
|
||||
if ( k != 0 )
|
||||
return ( (k>>gap) - bias );
|
||||
else if( x != zero)
|
||||
return ( -1022.0 );
|
||||
else
|
||||
return(-(1.0/zero));
|
||||
else if(x != x)
|
||||
return(x);
|
||||
else
|
||||
{*px &= msign; return(x);}
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
}
|
||||
|
||||
finite(x)
|
||||
double x;
|
||||
{
|
||||
#if defined(vax)||defined(tahoe)
|
||||
return(1);
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
#ifdef national
|
||||
return( (*((short *) &x+3 ) & mexp ) != mexp );
|
||||
#else /* national */
|
||||
return( (*((short *) &x ) & mexp ) != mexp );
|
||||
#endif /* national */
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
}
|
||||
|
||||
double drem(x,p)
|
||||
double x,p;
|
||||
{
|
||||
short sign;
|
||||
double hp,dp,tmp;
|
||||
unsigned short k;
|
||||
#ifdef national
|
||||
unsigned short
|
||||
*px=(unsigned short *) &x +3,
|
||||
*pp=(unsigned short *) &p +3,
|
||||
*pd=(unsigned short *) &dp +3,
|
||||
*pt=(unsigned short *) &tmp+3;
|
||||
#else /* national */
|
||||
unsigned short
|
||||
*px=(unsigned short *) &x ,
|
||||
*pp=(unsigned short *) &p ,
|
||||
*pd=(unsigned short *) &dp ,
|
||||
*pt=(unsigned short *) &tmp;
|
||||
#endif /* national */
|
||||
|
||||
*pp &= msign ;
|
||||
|
||||
#if defined(vax)||defined(tahoe)
|
||||
if( ( *px & mexp ) == ~msign ) /* is x a reserved operand? */
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
if( ( *px & mexp ) == mexp )
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
return (x-p)-(x-p); /* create nan if x is inf */
|
||||
if (p == zero) {
|
||||
#if defined(vax)||defined(tahoe)
|
||||
return(infnan(EDOM));
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
return zero/zero;
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
}
|
||||
|
||||
#if defined(vax)||defined(tahoe)
|
||||
if( ( *pp & mexp ) == ~msign ) /* is p a reserved operand? */
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
if( ( *pp & mexp ) == mexp )
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
{ if (p != p) return p; else return x;}
|
||||
|
||||
else if ( ((*pp & mexp)>>gap) <= 1 )
|
||||
/* subnormal p, or almost subnormal p */
|
||||
{ double b; b=scalb(1.0,(int)prep1);
|
||||
p *= b; x = drem(x,p); x *= b; return(drem(x,p)/b);}
|
||||
else if ( p >= novf/2)
|
||||
{ p /= 2 ; x /= 2; return(drem(x,p)*2);}
|
||||
else
|
||||
{
|
||||
dp=p+p; hp=p/2;
|
||||
sign= *px & ~msign ;
|
||||
*px &= msign ;
|
||||
while ( x > dp )
|
||||
{
|
||||
k=(*px & mexp) - (*pd & mexp) ;
|
||||
tmp = dp ;
|
||||
*pt += k ;
|
||||
|
||||
#if defined(vax)||defined(tahoe)
|
||||
if( x < tmp ) *pt -= 128 ;
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
if( x < tmp ) *pt -= 16 ;
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
|
||||
x -= tmp ;
|
||||
}
|
||||
if ( x > hp )
|
||||
{ x -= p ; if ( x >= hp ) x -= p ; }
|
||||
|
||||
#if defined(vax)||defined(tahoe)
|
||||
if (x)
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
*px ^= sign;
|
||||
return( x);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double sqrt(x)
|
||||
double x;
|
||||
{
|
||||
double q,s,b,r;
|
||||
double t;
|
||||
double const zero=0.0;
|
||||
int m,n,i;
|
||||
#if defined(vax)||defined(tahoe)
|
||||
int k=54;
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
int k=51;
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
|
||||
/* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
|
||||
if(x!=x||x==zero) return(x);
|
||||
|
||||
/* sqrt(negative) is invalid */
|
||||
if(x<zero) {
|
||||
#if defined(vax)||defined(tahoe)
|
||||
return (infnan(EDOM)); /* NaN */
|
||||
#else /* defined(vax)||defined(tahoe) */
|
||||
return(zero/zero);
|
||||
#endif /* defined(vax)||defined(tahoe) */
|
||||
}
|
||||
|
||||
/* sqrt(INF) is INF */
|
||||
if(!finite(x)) return(x);
|
||||
|
||||
/* scale x to [1,4) */
|
||||
n=logb(x);
|
||||
x=scalb(x,-n);
|
||||
if((m=logb(x))!=0) x=scalb(x,-m); /* subnormal number */
|
||||
m += n;
|
||||
n = m/2;
|
||||
if((n+n)!=m) {x *= 2; m -=1; n=m/2;}
|
||||
|
||||
/* generate sqrt(x) bit by bit (accumulating in q) */
|
||||
q=1.0; s=4.0; x -= 1.0; r=1;
|
||||
for(i=1;i<=k;i++) {
|
||||
t=s+1; x *= 4; r /= 2;
|
||||
if(t<=x) {
|
||||
s=t+t+2, x -= t; q += r;}
|
||||
else
|
||||
s *= 2;
|
||||
}
|
||||
|
||||
/* generate the last bit and determine the final rounding */
|
||||
r/=2; x *= 4;
|
||||
if(x==zero) goto end; 100+r; /* trigger inexact flag */
|
||||
if(s<x) {
|
||||
q+=r; x -=s; s += 2; s *= 2; x *= 4;
|
||||
t = (x-s)-5;
|
||||
b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */
|
||||
b=1.0+r/4; if(b>1.0) t=1; /* b>1 : Round-to-(+INF) */
|
||||
if(t>=0) q+=r; } /* else: Round-to-nearest */
|
||||
else {
|
||||
s *= 2; x *= 4;
|
||||
t = (x-s)-1;
|
||||
b=1.0+3*r/4; if(b==1.0) goto end;
|
||||
b=1.0+r/4; if(b>1.0) t=1;
|
||||
if(t>=0) q+=r; }
|
||||
|
||||
end: return(scalb(q,n));
|
||||
}
|
||||
|
||||
#if 0
|
||||
/* DREM(X,Y)
|
||||
* RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE)
|
||||
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
|
||||
* INTENDED FOR ASSEMBLY LANGUAGE
|
||||
* CODED IN C BY K.C. NG, 3/23/85, 4/8/85.
|
||||
*
|
||||
* Warning: this code should not get compiled in unless ALL of
|
||||
* the following machine-dependent routines are supplied.
|
||||
*
|
||||
* Required machine dependent functions (not on a VAX):
|
||||
* swapINX(i): save inexact flag and reset it to "i"
|
||||
* swapENI(e): save inexact enable and reset it to "e"
|
||||
*/
|
||||
|
||||
double drem(x,y)
|
||||
double x,y;
|
||||
{
|
||||
|
||||
#ifdef national /* order of words in floating point number */
|
||||
static const n0=3,n1=2,n2=1,n3=0;
|
||||
#else /* VAX, SUN, ZILOG, TAHOE */
|
||||
static const n0=0,n1=1,n2=2,n3=3;
|
||||
#endif
|
||||
|
||||
static const unsigned short mexp =0x7ff0, m25 =0x0190, m57 =0x0390;
|
||||
static const double zero=0.0;
|
||||
double hy,y1,t,t1;
|
||||
short k;
|
||||
long n;
|
||||
int i,e;
|
||||
unsigned short xexp,yexp, *px =(unsigned short *) &x ,
|
||||
nx,nf, *py =(unsigned short *) &y ,
|
||||
sign, *pt =(unsigned short *) &t ,
|
||||
*pt1 =(unsigned short *) &t1 ;
|
||||
|
||||
xexp = px[n0] & mexp ; /* exponent of x */
|
||||
yexp = py[n0] & mexp ; /* exponent of y */
|
||||
sign = px[n0] &0x8000; /* sign of x */
|
||||
|
||||
/* return NaN if x is NaN, or y is NaN, or x is INF, or y is zero */
|
||||
if(x!=x) return(x); if(y!=y) return(y); /* x or y is NaN */
|
||||
if( xexp == mexp ) return(zero/zero); /* x is INF */
|
||||
if(y==zero) return(y/y);
|
||||
|
||||
/* save the inexact flag and inexact enable in i and e respectively
|
||||
* and reset them to zero
|
||||
*/
|
||||
i=swapINX(0); e=swapENI(0);
|
||||
|
||||
/* subnormal number */
|
||||
nx=0;
|
||||
if(yexp==0) {t=1.0,pt[n0]+=m57; y*=t; nx=m57;}
|
||||
|
||||
/* if y is tiny (biased exponent <= 57), scale up y to y*2**57 */
|
||||
if( yexp <= m57 ) {py[n0]+=m57; nx+=m57; yexp+=m57;}
|
||||
|
||||
nf=nx;
|
||||
py[n0] &= 0x7fff;
|
||||
px[n0] &= 0x7fff;
|
||||
|
||||
/* mask off the least significant 27 bits of y */
|
||||
t=y; pt[n3]=0; pt[n2]&=0xf800; y1=t;
|
||||
|
||||
/* LOOP: argument reduction on x whenever x > y */
|
||||
loop:
|
||||
while ( x > y )
|
||||
{
|
||||
t=y;
|
||||
t1=y1;
|
||||
xexp=px[n0]&mexp; /* exponent of x */
|
||||
k=xexp-yexp-m25;
|
||||
if(k>0) /* if x/y >= 2**26, scale up y so that x/y < 2**26 */
|
||||
{pt[n0]+=k;pt1[n0]+=k;}
|
||||
n=x/t; x=(x-n*t1)-n*(t-t1);
|
||||
}
|
||||
/* end while (x > y) */
|
||||
|
||||
if(nx!=0) {t=1.0; pt[n0]+=nx; x*=t; nx=0; goto loop;}
|
||||
|
||||
/* final adjustment */
|
||||
|
||||
hy=y/2.0;
|
||||
if(x>hy||((x==hy)&&n%2==1)) x-=y;
|
||||
px[n0] ^= sign;
|
||||
if(nf!=0) { t=1.0; pt[n0]-=nf; x*=t;}
|
||||
|
||||
/* restore inexact flag and inexact enable */
|
||||
swapINX(i); swapENI(e);
|
||||
|
||||
return(x);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
/* SQRT
|
||||
* RETURN CORRECTLY ROUNDED (ACCORDING TO THE ROUNDING MODE) SQRT
|
||||
* FOR IEEE DOUBLE PRECISION ONLY, INTENDED FOR ASSEMBLY LANGUAGE
|
||||
* CODED IN C BY K.C. NG, 3/22/85.
|
||||
*
|
||||
* Warning: this code should not get compiled in unless ALL of
|
||||
* the following machine-dependent routines are supplied.
|
||||
*
|
||||
* Required machine dependent functions:
|
||||
* swapINX(i) ...return the status of INEXACT flag and reset it to "i"
|
||||
* swapRM(r) ...return the current Rounding Mode and reset it to "r"
|
||||
* swapENI(e) ...return the status of inexact enable and reset it to "e"
|
||||
* addc(t) ...perform t=t+1 regarding t as a 64 bit unsigned integer
|
||||
* subc(t) ...perform t=t-1 regarding t as a 64 bit unsigned integer
|
||||
*/
|
||||
|
||||
static const unsigned long table[] = {
|
||||
0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740,
|
||||
58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478,
|
||||
21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130, };
|
||||
|
||||
double newsqrt(x)
|
||||
double x;
|
||||
{
|
||||
double y,z,t,addc(),subc()
|
||||
double const b54=134217728.*134217728.; /* b54=2**54 */
|
||||
long mx,scalx;
|
||||
long const mexp=0x7ff00000;
|
||||
int i,j,r,e,swapINX(),swapRM(),swapENI();
|
||||
unsigned long *py=(unsigned long *) &y ,
|
||||
*pt=(unsigned long *) &t ,
|
||||
*px=(unsigned long *) &x ;
|
||||
#ifdef national /* ordering of word in a floating point number */
|
||||
const int n0=1, n1=0;
|
||||
#else
|
||||
const int n0=0, n1=1;
|
||||
#endif
|
||||
/* Rounding Mode: RN ...round-to-nearest
|
||||
* RZ ...round-towards 0
|
||||
* RP ...round-towards +INF
|
||||
* RM ...round-towards -INF
|
||||
*/
|
||||
const int RN=0,RZ=1,RP=2,RM=3;
|
||||
/* machine dependent: work on a Zilog Z8070
|
||||
* and a National 32081 & 16081
|
||||
*/
|
||||
|
||||
/* exceptions */
|
||||
if(x!=x||x==0.0) return(x); /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
|
||||
if(x<0) return((x-x)/(x-x)); /* sqrt(negative) is invalid */
|
||||
if((mx=px[n0]&mexp)==mexp) return(x); /* sqrt(+INF) is +INF */
|
||||
|
||||
/* save, reset, initialize */
|
||||
e=swapENI(0); /* ...save and reset the inexact enable */
|
||||
i=swapINX(0); /* ...save INEXACT flag */
|
||||
r=swapRM(RN); /* ...save and reset the Rounding Mode to RN */
|
||||
scalx=0;
|
||||
|
||||
/* subnormal number, scale up x to x*2**54 */
|
||||
if(mx==0) {x *= b54 ; scalx-=0x01b00000;}
|
||||
|
||||
/* scale x to avoid intermediate over/underflow:
|
||||
* if (x > 2**512) x=x/2**512; if (x < 2**-512) x=x*2**512 */
|
||||
if(mx>0x5ff00000) {px[n0] -= 0x20000000; scalx+= 0x10000000;}
|
||||
if(mx<0x1ff00000) {px[n0] += 0x20000000; scalx-= 0x10000000;}
|
||||
|
||||
/* magic initial approximation to almost 8 sig. bits */
|
||||
py[n0]=(px[n0]>>1)+0x1ff80000;
|
||||
py[n0]=py[n0]-table[(py[n0]>>15)&31];
|
||||
|
||||
/* Heron's rule once with correction to improve y to almost 18 sig. bits */
|
||||
t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0;
|
||||
|
||||
/* triple to almost 56 sig. bits; now y approx. sqrt(x) to within 1 ulp */
|
||||
t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y;
|
||||
t=z/(t+x) ; pt[n0]+=0x00100000; y+=t;
|
||||
|
||||
/* twiddle last bit to force y correctly rounded */
|
||||
swapRM(RZ); /* ...set Rounding Mode to round-toward-zero */
|
||||
swapINX(0); /* ...clear INEXACT flag */
|
||||
swapENI(e); /* ...restore inexact enable status */
|
||||
t=x/y; /* ...chopped quotient, possibly inexact */
|
||||
j=swapINX(i); /* ...read and restore inexact flag */
|
||||
if(j==0) { if(t==y) goto end; else t=subc(t); } /* ...t=t-ulp */
|
||||
b54+0.1; /* ..trigger inexact flag, sqrt(x) is inexact */
|
||||
if(r==RN) t=addc(t); /* ...t=t+ulp */
|
||||
else if(r==RP) { t=addc(t);y=addc(y);}/* ...t=t+ulp;y=y+ulp; */
|
||||
y=y+t; /* ...chopped sum */
|
||||
py[n0]=py[n0]-0x00100000; /* ...correctly rounded sqrt(x) */
|
||||
end: py[n0]=py[n0]+scalx; /* ...scale back y */
|
||||
swapRM(r); /* ...restore Rounding Mode */
|
||||
return(y);
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user