add directory kernel

This commit is contained in:
gohigh
2024-02-19 00:24:53 -05:00
parent eec934fe6c
commit a4964ba92d
749 changed files with 100620 additions and 0 deletions

View File

@@ -0,0 +1,404 @@
!
! SYS_SIZE is the number of clicks (16 bytes) to be loaded.
! 0x3000 is 0x30000 bytes = 196kB, more than enough for current
! versions of linux
!
#include <linux/config.h>
SYSSIZE = DEF_SYSSIZE
!
! bootsect.s (C) 1991 Linus Torvalds
! modified by Drew Eckhardt
!
! bootsect.s is loaded at 0x7c00 by the bios-startup routines, and moves
! iself out of the way to address 0x90000, and jumps there.
!
! It then loads 'setup' directly after itself (0x90200), and the system
! at 0x10000, using BIOS interrupts.
!
! NOTE! currently system is at most 8*65536 bytes long. This should be no
! problem, even in the future. I want to keep it simple. This 512 kB
! kernel size should be enough, especially as this doesn't contain the
! buffer cache as in minix
!
! The loader has been made as simple as possible, and continuos
! read errors will result in a unbreakable loop. Reboot by hand. It
! loads pretty fast by getting whole sectors at a time whenever possible.
.globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text
SETUPLEN = 4 ! nr of setup-sectors
BOOTSEG = 0x07c0 ! original address of boot-sector
INITSEG = DEF_INITSEG ! we move boot here - out of the way
SETUPSEG = DEF_SETUPSEG ! setup starts here
SYSSEG = DEF_SYSSEG ! system loaded at 0x10000 (65536).
ENDSEG = SYSSEG + SYSSIZE ! where to stop loading
! ROOT_DEV & SWAP_DEV are now written by "build".
ROOT_DEV = 0
SWAP_DEV = 0
entry start
start:
mov ax,#BOOTSEG
mov ds,ax
mov ax,#INITSEG
mov es,ax
mov cx,#256
sub si,si
sub di,di
rep
movw
jmpi go,INITSEG
go: mov ax,cs
mov dx,#0xfef4 ! arbitrary value >>512 - disk parm size
mov ds,ax
mov es,ax
push ax
mov ss,ax ! put stack at 0x9ff00 - 12.
mov sp,dx
/*
* Many BIOS's default disk parameter tables will not
* recognize multi-sector reads beyond the maximum sector number
* specified in the default diskette parameter tables - this may
* mean 7 sectors in some cases.
*
* Since single sector reads are slow and out of the question,
* we must take care of this by creating new parameter tables
* (for the first disk) in RAM. We will set the maximum sector
* count to 18 - the most we will encounter on an HD 1.44.
*
* High doesn't hurt. Low does.
*
* Segments are as follows: ds=es=ss=cs - INITSEG,
* fs = 0, gs = parameter table segment
*/
push #0
pop fs
mov bx,#0x78 ! fs:bx is parameter table address
seg fs
lgs si,(bx) ! gs:si is source
mov di,dx ! es:di is destination
mov cx,#6 ! copy 12 bytes
cld
rep
seg gs
movw
mov di,dx
movb 4(di),*18 ! patch sector count
seg fs
mov (bx),di
seg fs
mov 2(bx),es
pop ax
mov fs,ax
mov gs,ax
xor ah,ah ! reset FDC
xor dl,dl
int 0x13
! load the setup-sectors directly after the bootblock.
! Note that 'es' is already set up.
load_setup:
xor dx, dx ! drive 0, head 0
mov cx,#0x0002 ! sector 2, track 0
mov bx,#0x0200 ! address = 512, in INITSEG
mov ax,#0x0200+SETUPLEN ! service 2, nr of sectors
int 0x13 ! read it
jnc ok_load_setup ! ok - continue
push ax ! dump error code
call print_nl
mov bp, sp
call print_hex
pop ax
xor dl, dl ! reset FDC
xor ah, ah
int 0x13
j load_setup
ok_load_setup:
! Get disk drive parameters, specifically nr of sectors/track
xor dl,dl
mov ah,#0x08 ! AH=8 is get drive parameters
int 0x13
xor ch,ch
seg cs
mov sectors,cx
mov ax,#INITSEG
mov es,ax
! Print some inane message
mov ah,#0x03 ! read cursor pos
xor bh,bh
int 0x10
mov cx,#9
mov bx,#0x0007 ! page 0, attribute 7 (normal)
mov bp,#msg1
mov ax,#0x1301 ! write string, move cursor
int 0x10
! ok, we've written the message, now
! we want to load the system (at 0x10000)
mov ax,#SYSSEG
mov es,ax ! segment of 0x010000
call read_it
call kill_motor
call print_nl
! After that we check which root-device to use. If the device is
! defined (!= 0), nothing is done and the given device is used.
! Otherwise, either /dev/PS0 (2,28) or /dev/at0 (2,8), depending
! on the number of sectors that the BIOS reports currently.
seg cs
mov ax,root_dev
or ax,ax
jne root_defined
seg cs
mov bx,sectors
mov ax,#0x0208 ! /dev/ps0 - 1.2Mb
cmp bx,#15
je root_defined
mov ax,#0x021c ! /dev/PS0 - 1.44Mb
cmp bx,#18
je root_defined
undef_root:
jmp undef_root
root_defined:
seg cs
mov root_dev,ax
! after that (everyting loaded), we jump to
! the setup-routine loaded directly after
! the bootblock:
jmpi 0,SETUPSEG
! This routine loads the system at address 0x10000, making sure
! no 64kB boundaries are crossed. We try to load it as fast as
! possible, loading whole tracks whenever we can.
!
! in: es - starting address segment (normally 0x1000)
!
sread: .word 1+SETUPLEN ! sectors read of current track
head: .word 0 ! current head
track: .word 0 ! current track
read_it:
mov ax,es
test ax,#0x0fff
die: jne die ! es must be at 64kB boundary
xor bx,bx ! bx is starting address within segment
rp_read:
mov ax,es
cmp ax,#ENDSEG ! have we loaded all yet?
jb ok1_read
ret
ok1_read:
seg cs
mov ax,sectors
sub ax,sread
mov cx,ax
shl cx,#9
add cx,bx
jnc ok2_read
je ok2_read
xor ax,ax
sub ax,bx
shr ax,#9
ok2_read:
call read_track
mov cx,ax
add ax,sread
seg cs
cmp ax,sectors
jne ok3_read
mov ax,#1
sub ax,head
jne ok4_read
inc track
ok4_read:
mov head,ax
xor ax,ax
ok3_read:
mov sread,ax
shl cx,#9
add bx,cx
jnc rp_read
mov ax,es
add ah,#0x10
mov es,ax
xor bx,bx
jmp rp_read
read_track:
pusha
pusha
mov ax, #0xe2e ! loading... message 2e = .
mov bx, #7
int 0x10
popa
mov dx,track
mov cx,sread
inc cx
mov ch,dl
mov dx,head
mov dh,dl
and dx,#0x0100
mov ah,#2
push dx ! save for error dump
push cx
push bx
push ax
int 0x13
jc bad_rt
add sp, #8
popa
ret
bad_rt: push ax ! save error code
call print_all ! ah = error, al = read
xor ah,ah
xor dl,dl
int 0x13
add sp, #10
popa
jmp read_track
/*
* print_all is for debugging purposes.
* It will print out all of the registers. The assumption is that this is
* called from a routine, with a stack frame like
* dx
* cx
* bx
* ax
* error
* ret <- sp
*
*/
print_all:
mov cx, #5 ! error code + 4 registers
mov bp, sp
print_loop:
push cx ! save count left
call print_nl ! nl for readability
jae no_reg ! see if register name is needed
mov ax, #0xe05 + 0x41 - 1
sub al, cl
int 0x10
mov al, #0x58 ! X
int 0x10
mov al, #0x3a ! :
int 0x10
no_reg:
add bp, #2 ! next register
call print_hex ! print it
pop cx
loop print_loop
ret
print_nl:
mov ax, #0xe0d ! CR
int 0x10
mov al, #0xa ! LF
int 0x10
ret
/*
* print_hex is for debugging purposes, and prints the word
* pointed to by ss:bp in hexadecmial.
*/
print_hex:
mov cx, #4 ! 4 hex digits
mov dx, (bp) ! load word into dx
print_digit:
rol dx, #4 ! rotate so that lowest 4 bits are used
mov ah, #0xe
mov al, dl ! mask off so we have only next nibble
and al, #0xf
add al, #0x30 ! convert to 0 based digit, '0'
cmp al, #0x39 ! check for overflow
jbe good_digit
add al, #0x41 - 0x30 - 0xa ! 'A' - '0' - 0xa
good_digit:
int 0x10
loop print_digit
ret
/*
* This procedure turns off the floppy drive motor, so
* that we enter the kernel in a known state, and
* don't have to worry about it later.
*/
kill_motor:
push dx
mov dx,#0x3f2
xor al, al
outb
pop dx
ret
sectors:
.word 0
msg1:
.byte 13,10
.ascii "Loading"
.org 506
swap_dev:
.word SWAP_DEV
root_dev:
.word ROOT_DEV
boot_flag:
.word 0xAA55
.text
endtext:
.data
enddata:
.bss
endbss:

View File

@@ -0,0 +1,238 @@
/*
* linux/boot/head.s
*
* (C) 1991 Linus Torvalds
*/
/*
* head.s contains the 32-bit startup code.
*
* NOTE!!! Startup happens at absolute address 0x00000000, which is also where
* the page directory will exist. The startup code will be overwritten by
* the page directory.
*/
.text
.globl _idt,_gdt,_pg_dir,_tmp_floppy_area
_pg_dir:
startup_32:
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
mov %ax,%fs
mov %ax,%gs
lss _stack_start,%esp
call setup_idt
call setup_gdt
movl $0x10,%eax # reload all the segment registers
mov %ax,%ds # after changing gdt. CS was already
mov %ax,%es # reloaded in 'setup_gdt'
mov %ax,%fs
mov %ax,%gs
lss _stack_start,%esp
xorl %eax,%eax
1: incl %eax # check that A20 really IS enabled
movl %eax,0x000000 # loop forever if it isn't
cmpl %eax,0x100000
je 1b
/*
* NOTE! 486 should set bit 16, to check for write-protect in supervisor
* mode. Then it would be unnecessary with the "verify_area()"-calls.
* 486 users probably want to set the NE (#5) bit also, so as to use
* int 16 for math errors.
*/
movl %cr0,%eax # check math chip
andl $0x80000011,%eax # Save PG,PE,ET
/* "orl $0x10020,%eax" here for 486 might be good */
orl $2,%eax # set MP
movl %eax,%cr0
call check_x87
jmp after_page_tables
/*
* We depend on ET to be correct. This checks for 287/387.
*/
check_x87:
fninit
fstsw %ax
cmpb $0,%al
je 1f /* no coprocessor: have to set bits */
movl %cr0,%eax
xorl $6,%eax /* reset MP, set EM */
movl %eax,%cr0
ret
.align 2
1: .byte 0xDB,0xE4 /* fsetpm for 287, ignored by 387 */
ret
/*
* setup_idt
*
* sets up a idt with 256 entries pointing to
* ignore_int, interrupt gates. It then loads
* idt. Everything that wants to install itself
* in the idt-table may do so themselves. Interrupts
* are enabled elsewhere, when we can be relatively
* sure everything is ok. This routine will be over-
* written by the page tables.
*/
setup_idt:
lea ignore_int,%edx
movl $0x00080000,%eax
movw %dx,%ax /* selector = 0x0008 = cs */
movw $0x8E00,%dx /* interrupt gate - dpl=0, present */
lea _idt,%edi
mov $256,%ecx
rp_sidt:
movl %eax,(%edi)
movl %edx,4(%edi)
addl $8,%edi
dec %ecx
jne rp_sidt
lidt idt_descr
ret
/*
* setup_gdt
*
* This routines sets up a new gdt and loads it.
* Only two entries are currently built, the same
* ones that were built in init.s. The routine
* is VERY complicated at two whole lines, so this
* rather long comment is certainly needed :-).
* This routine will beoverwritten by the page tables.
*/
setup_gdt:
lgdt gdt_descr
ret
/*
* I put the kernel page tables right after the page directory,
* using 4 of them to span 16 Mb of physical memory. People with
* more than 16MB will have to expand this.
*/
.org 0x1000
pg0:
.org 0x2000
pg1:
.org 0x3000
pg2:
.org 0x4000
pg3:
.org 0x5000
/*
* tmp_floppy_area is used by the floppy-driver when DMA cannot
* reach to a buffer-block. It needs to be aligned, so that it isn't
* on a 64kB border.
*/
_tmp_floppy_area:
.fill 1024,1,0
after_page_tables:
pushl $0 # These are the parameters to main :-)
pushl $0
pushl $0
pushl $L6 # return address for main, if it decides to.
pushl $_main
jmp setup_paging
L6:
jmp L6 # main should never return here, but
# just in case, we know what happens.
/* This is the default interrupt "handler" :-) */
int_msg:
.asciz "Unknown interrupt\n\r"
.align 2
ignore_int:
pushl %eax
pushl %ecx
pushl %edx
push %ds
push %es
push %fs
movl $0x10,%eax
mov %ax,%ds
mov %ax,%es
mov %ax,%fs
pushl $int_msg
call _printk
popl %eax
pop %fs
pop %es
pop %ds
popl %edx
popl %ecx
popl %eax
iret
/*
* Setup_paging
*
* This routine sets up paging by setting the page bit
* in cr0. The page tables are set up, identity-mapping
* the first 16MB. The pager assumes that no illegal
* addresses are produced (ie >4Mb on a 4Mb machine).
*
* NOTE! Although all physical memory should be identity
* mapped by this routine, only the kernel page functions
* use the >1Mb addresses directly. All "normal" functions
* use just the lower 1Mb, or the local data space, which
* will be mapped to some other place - mm keeps track of
* that.
*
* For those with more memory than 16 Mb - tough luck. I've
* not got it, why should you :-) The source is here. Change
* it. (Seriously - it shouldn't be too difficult. Mostly
* change some constants etc. I left it at 16Mb, as my machine
* even cannot be extended past that (ok, but it was cheap :-)
* I've tried to show which constants to change by having
* some kind of marker at them (search for "16Mb"), but I
* won't guarantee that's all :-( )
*/
.align 2
setup_paging:
movl $1024*5,%ecx /* 5 pages - pg_dir+4 page tables */
xorl %eax,%eax
xorl %edi,%edi /* pg_dir is at 0x000 */
cld;rep;stosl
movl $pg0+7,_pg_dir /* set present bit/user r/w */
movl $pg1+7,_pg_dir+4 /* --------- " " --------- */
movl $pg2+7,_pg_dir+8 /* --------- " " --------- */
movl $pg3+7,_pg_dir+12 /* --------- " " --------- */
movl $pg3+4092,%edi
movl $0xfff007,%eax /* 16Mb - 4096 + 7 (r/w user,p) */
std
1: stosl /* fill pages backwards - more efficient :-) */
subl $0x1000,%eax
jge 1b
xorl %eax,%eax /* pg_dir is at 0x0000 */
movl %eax,%cr3 /* cr3 - page directory start */
movl %cr0,%eax
orl $0x80000000,%eax
movl %eax,%cr0 /* set paging (PG) bit */
ret /* this also flushes prefetch-queue */
.align 2
.word 0
idt_descr:
.word 256*8-1 # idt contains 256 entries
.long _idt
.align 2
.word 0
gdt_descr:
.word 256*8-1 # so does gdt (not that that's any
.long _gdt # magic number, but it works for me :^)
.align 3
_idt: .fill 256,8,0 # idt is uninitialized
_gdt: .quad 0x0000000000000000 /* NULL descriptor */
.quad 0x00c09a0000000fff /* 16Mb */
.quad 0x00c0920000000fff /* 16Mb */
.quad 0x0000000000000000 /* TEMPORARY - don't use */
.fill 252,8,0 /* space for LDT's and TSS's etc */

View File

@@ -0,0 +1,631 @@
!
! setup.s (C) 1991 Linus Torvalds
!
! setup.s is responsible for getting the system data from the BIOS,
! and putting them into the appropriate places in system memory.
! both setup.s and system has been loaded by the bootblock.
!
! This code asks the bios for memory/disk/other parameters, and
! puts them in a "safe" place: 0x90000-0x901FF, ie where the
! boot-block used to be. It is then up to the protected mode
! system to read them from there before the area is overwritten
! for buffer-blocks.
!
! NOTE! These had better be the same as in bootsect.s!
#include <linux/config.h>
INITSEG = DEF_INITSEG ! we move boot here - out of the way
SYSSEG = DEF_SYSSEG ! system loaded at 0x10000 (65536).
SETUPSEG = DEF_SETUPSEG ! this is the current segment
.globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text
entry start
start:
! ok, the read went well so we get current cursor position and save it for
! posterity.
mov ax,#INITSEG ! this is done in bootsect already, but...
mov ds,ax
! Get memory size (extended mem, kB)
mov ah,#0x88
int 0x15
mov [2],ax
! check for EGA/VGA and some config parameters
mov ah,#0x12
mov bl,#0x10
int 0x10
mov [8],ax
mov [10],bx
mov [12],cx
mov ax,#0x5019
cmp bl,#0x10
je novga
call chsvga
novga: mov [14],ax
mov ah,#0x03 ! read cursor pos
xor bh,bh
int 0x10 ! save it in known place, con_init fetches
mov [0],dx ! it from 0x90000.
! Get video-card data:
mov ah,#0x0f
int 0x10
mov [4],bx ! bh = display page
mov [6],ax ! al = video mode, ah = window width
! Get hd0 data
mov ax,#0x0000
mov ds,ax
lds si,[4*0x41]
mov ax,#INITSEG
mov es,ax
mov di,#0x0080
mov cx,#0x10
rep
movsb
! Get hd1 data
mov ax,#0x0000
mov ds,ax
lds si,[4*0x46]
mov ax,#INITSEG
mov es,ax
mov di,#0x0090
mov cx,#0x10
rep
movsb
! Check that there IS a hd1 :-)
mov ax,#0x01500
mov dl,#0x81
int 0x13
jc no_disk1
cmp ah,#3
je is_disk1
no_disk1:
mov ax,#INITSEG
mov es,ax
mov di,#0x0090
mov cx,#0x10
mov ax,#0x00
rep
stosb
is_disk1:
! now we want to move to protected mode ...
cli ! no interrupts allowed !
! first we move the system to it's rightful place
mov ax,#0x0000
cld ! 'direction'=0, movs moves forward
do_move:
mov es,ax ! destination segment
add ax,#0x1000
cmp ax,#0x9000
jz end_move
mov ds,ax ! source segment
sub di,di
sub si,si
mov cx,#0x8000
rep
movsw
jmp do_move
! then we load the segment descriptors
end_move:
mov ax,#SETUPSEG ! right, forgot this at first. didn't work :-)
mov ds,ax
lidt idt_48 ! load idt with 0,0
lgdt gdt_48 ! load gdt with whatever appropriate
! that was painless, now we enable A20
call empty_8042
mov al,#0xD1 ! command write
out #0x64,al
call empty_8042
mov al,#0xDF ! A20 on
out #0x60,al
call empty_8042
! well, that went ok, I hope. Now we have to reprogram the interrupts :-(
! we put them right after the intel-reserved hardware interrupts, at
! int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
! messed this up with the original PC, and they haven't been able to
! rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
! which is used for the internal hardware interrupts as well. We just
! have to reprogram the 8259's, and it isn't fun.
mov al,#0x11 ! initialization sequence
out #0x20,al ! send it to 8259A-1
.word 0x00eb,0x00eb ! jmp $+2, jmp $+2
out #0xA0,al ! and to 8259A-2
.word 0x00eb,0x00eb
mov al,#0x20 ! start of hardware int's (0x20)
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x28 ! start of hardware int's 2 (0x28)
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x04 ! 8259-1 is master
out #0x21,al
.word 0x00eb,0x00eb
mov al,#0x02 ! 8259-2 is slave
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0x01 ! 8086 mode for both
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al
.word 0x00eb,0x00eb
mov al,#0xFF ! mask off all interrupts for now
out #0x21,al
.word 0x00eb,0x00eb
out #0xA1,al
! well, that certainly wasn't fun :-(. Hopefully it works, and we don't
! need no steenking BIOS anyway (except for the initial loading :-).
! The BIOS-routine wants lots of unnecessary data, and it's less
! "interesting" anyway. This is how REAL programmers do it.
!
! Well, now's the time to actually move into protected mode. To make
! things as simple as possible, we do no register set-up or anything,
! we let the gnu-compiled 32-bit programs do that. We just jump to
! absolute address 0x00000, in 32-bit protected mode.
mov ax,#0x0001 ! protected mode (PE) bit
lmsw ax ! This is it!
jmpi 0,8 ! jmp offset 0 of segment 8 (cs)
! This routine checks that the keyboard command queue is empty
! No timeout is used - if this hangs there is something wrong with
! the machine, and we probably couldn't proceed anyway.
empty_8042:
.word 0x00eb,0x00eb
in al,#0x64 ! 8042 status port
test al,#2 ! is input buffer full?
jnz empty_8042 ! yes - loop
ret
! Routine trying to recognize type of SVGA-board present (if any)
! and if it recognize one gives the choices of resolution it offers.
! If one is found the resolution chosen is given by al,ah (rows,cols).
chsvga: cld
push ds
push cs
pop ds
mov ax,#0xc000
mov es,ax
lea si,msg1
call prtstr
nokey: in al,#0x60
cmp al,#0x82
jb nokey
cmp al,#0xe0
ja nokey
cmp al,#0x9c
je svga
mov ax,#0x5019
pop ds
ret
svga: lea si,idati ! Check ATI 'clues'
mov di,#0x31
mov cx,#0x09
repe
cmpsb
jne noati
lea si,dscati
lea di,moati
lea cx,selmod
jmp cx
noati: mov ax,#0x200f ! Check Ahead 'clues'
mov dx,#0x3ce
out dx,ax
inc dx
in al,dx
cmp al,#0x20
je isahed
cmp al,#0x21
jne noahed
isahed: lea si,dscahead
lea di,moahead
lea cx,selmod
jmp cx
noahed: mov dx,#0x3c3 ! Check Chips & Tech. 'clues'
in al,dx
or al,#0x10
out dx,al
mov dx,#0x104
in al,dx
mov bl,al
mov dx,#0x3c3
in al,dx
and al,#0xef
out dx,al
cmp bl,[idcandt]
jne nocant
lea si,dsccandt
lea di,mocandt
lea cx,selmod
jmp cx
nocant: mov dx,#0x3d4 ! Check Cirrus 'clues'
mov al,#0x0c
out dx,al
inc dx
in al,dx
mov bl,al
xor al,al
out dx,al
dec dx
mov al,#0x1f
out dx,al
inc dx
in al,dx
mov bh,al
xor ah,ah
shl al,#4
mov cx,ax
mov al,bh
shr al,#4
add cx,ax
shl cx,#8
add cx,#6
mov ax,cx
mov dx,#0x3c4
out dx,ax
inc dx
in al,dx
and al,al
jnz nocirr
mov al,bh
out dx,al
in al,dx
cmp al,#0x01
jne nocirr
call rst3d4
lea si,dsccirrus
lea di,mocirrus
lea cx,selmod
jmp cx
rst3d4: mov dx,#0x3d4
mov al,bl
xor ah,ah
shl ax,#8
add ax,#0x0c
out dx,ax
ret
nocirr: call rst3d4 ! Check Everex 'clues'
mov ax,#0x7000
xor bx,bx
int 0x10
cmp al,#0x70
jne noevrx
shr dx,#4
cmp dx,#0x678
je istrid
cmp dx,#0x236
je istrid
lea si,dsceverex
lea di,moeverex
lea cx,selmod
jmp cx
istrid: lea cx,ev2tri
jmp cx
noevrx: lea si,idgenoa ! Check Genoa 'clues'
xor ax,ax
seg es
mov al,[0x37]
mov di,ax
mov cx,#0x04
dec si
dec di
l1: inc si
inc di
mov al,(si)
seg es
and al,(di)
cmp al,(si)
loope l1
cmp cx,#0x00
jne nogen
lea si,dscgenoa
lea di,mogenoa
lea cx,selmod
jmp cx
nogen: lea si,idparadise ! Check Paradise 'clues'
mov di,#0x7d
mov cx,#0x04
repe
cmpsb
jne nopara
lea si,dscparadise
lea di,moparadise
lea cx,selmod
jmp cx
nopara: mov dx,#0x3c4 ! Check Trident 'clues'
mov al,#0x0e
out dx,al
inc dx
in al,dx
xchg ah,al
mov al,#0x00
out dx,al
in al,dx
xchg al,ah
mov bl,al ! Strange thing ... in the book this wasn't
and bl,#0x02 ! necessary but it worked on my card which
jz setb2 ! is a trident. Without it the screen goes
and al,#0xfd ! blurred ...
jmp clrb2 !
setb2: or al,#0x02 !
clrb2: out dx,al
and ah,#0x0f
cmp ah,#0x02
jne notrid
ev2tri: lea si,dsctrident
lea di,motrident
lea cx,selmod
jmp cx
notrid: mov dx,#0x3cd ! Check Tseng 'clues'
in al,dx ! Could things be this simple ! :-)
mov bl,al
mov al,#0x55
out dx,al
in al,dx
mov ah,al
mov al,bl
out dx,al
cmp ah,#0x55
jne notsen
lea si,dsctseng
lea di,motseng
lea cx,selmod
jmp cx
notsen: mov dx,#0x3cc ! Check Video7 'clues'
in al,dx
mov dx,#0x3b4
and al,#0x01
jz even7
mov dx,#0x3d4
even7: mov al,#0x0c
out dx,al
inc dx
in al,dx
mov bl,al
mov al,#0x55
out dx,al
in al,dx
dec dx
mov al,#0x1f
out dx,al
inc dx
in al,dx
mov bh,al
dec dx
mov al,#0x0c
out dx,al
inc dx
mov al,bl
out dx,al
mov al,#0x55
xor al,#0xea
cmp al,bh
jne novid7
lea si,dscvideo7
lea di,movideo7
selmod: push si
lea si,msg2
call prtstr
xor cx,cx
mov cl,(di)
pop si
push si
push cx
tbl: pop bx
push bx
mov al,bl
sub al,cl
call dprnt
call spcing
lodsw
xchg al,ah
call dprnt
xchg ah,al
push ax
mov al,#0x78
call prnt1
pop ax
call dprnt
call docr
loop tbl
pop cx
call docr
lea si,msg3
call prtstr
pop si
add cl,#0x80
nonum: in al,#0x60 ! Quick and dirty...
cmp al,#0x82
jb nonum
cmp al,#0x8b
je zero
cmp al,cl
ja nonum
jmp nozero
zero: sub al,#0x0a
nozero: sub al,#0x80
dec al
xor ah,ah
add di,ax
inc di
push ax
mov al,(di)
int 0x10
pop ax
shl ax,#1
add si,ax
lodsw
pop ds
ret
novid7: pop ds ! Here could be code to support standard 80x50,80x30
mov ax,#0x5019
ret
! Routine that 'tabs' to next col.
spcing: mov al,#0x2e
call prnt1
mov al,#0x20
call prnt1
mov al,#0x20
call prnt1
mov al,#0x20
call prnt1
mov al,#0x20
call prnt1
ret
! Routine to print asciiz-string at DS:SI
prtstr: lodsb
and al,al
jz fin
call prnt1
jmp prtstr
fin: ret
! Routine to print a decimal value on screen, the value to be
! printed is put in al (i.e 0-255).
dprnt: push ax
push cx
mov ah,#0x00
mov cl,#0x0a
idiv cl
cmp al,#0x09
jbe lt100
call dprnt
jmp skip10
lt100: add al,#0x30
call prnt1
skip10: mov al,ah
add al,#0x30
call prnt1
pop cx
pop ax
ret
! Part of above routine, this one just prints ascii al
prnt1: push ax
push cx
mov bh,#0x00
mov cx,#0x01
mov ah,#0x0e
int 0x10
pop cx
pop ax
ret
! Prints <CR> + <LF>
docr: push ax
push cx
mov bh,#0x00
mov ah,#0x0e
mov al,#0x0a
mov cx,#0x01
int 0x10
mov al,#0x0d
int 0x10
pop cx
pop ax
ret
gdt:
.word 0,0,0,0 ! dummy
.word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 ! base address=0
.word 0x9A00 ! code read/exec
.word 0x00C0 ! granularity=4096, 386
.word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 ! base address=0
.word 0x9200 ! data read/write
.word 0x00C0 ! granularity=4096, 386
idt_48:
.word 0 ! idt limit=0
.word 0,0 ! idt base=0L
gdt_48:
.word 0x800 ! gdt limit=2048, 256 GDT entries
.word 512+gdt,0x9 ! gdt base = 0X9xxxx
msg1: .ascii "Press <RETURN> to see SVGA-modes available or any other key to continue."
db 0x0d, 0x0a, 0x0a, 0x00
msg2: .ascii "Mode: COLSxROWS:"
db 0x0d, 0x0a, 0x0a, 0x00
msg3: .ascii "Choose mode by pressing the corresponding number."
db 0x0d, 0x0a, 0x00
idati: .ascii "761295520"
idcandt: .byte 0xa5
idgenoa: .byte 0x77, 0x00, 0x66, 0x99
idparadise: .ascii "VGA="
! Manufacturer: Numofmodes: Mode:
moati: .byte 0x02, 0x23, 0x33
moahead: .byte 0x05, 0x22, 0x23, 0x24, 0x2f, 0x34
mocandt: .byte 0x02, 0x60, 0x61
mocirrus: .byte 0x04, 0x1f, 0x20, 0x22, 0x31
moeverex: .byte 0x0a, 0x03, 0x04, 0x07, 0x08, 0x0a, 0x0b, 0x16, 0x18, 0x21, 0x40
mogenoa: .byte 0x0a, 0x58, 0x5a, 0x60, 0x61, 0x62, 0x63, 0x64, 0x72, 0x74, 0x78
moparadise: .byte 0x02, 0x55, 0x54
motrident: .byte 0x07, 0x50, 0x51, 0x52, 0x57, 0x58, 0x59, 0x5a
motseng: .byte 0x05, 0x26, 0x2a, 0x23, 0x24, 0x22
movideo7: .byte 0x06, 0x40, 0x43, 0x44, 0x41, 0x42, 0x45
! msb = Cols lsb = Rows:
dscati: .word 0x8419, 0x842c
dscahead: .word 0x842c, 0x8419, 0x841c, 0xa032, 0x5042
dsccandt: .word 0x8419, 0x8432
dsccirrus: .word 0x8419, 0x842c, 0x841e, 0x6425
dsceverex: .word 0x5022, 0x503c, 0x642b, 0x644b, 0x8419, 0x842c, 0x501e, 0x641b, 0xa040, 0x841e
dscgenoa: .word 0x5020, 0x642a, 0x8419, 0x841d, 0x8420, 0x842c, 0x843c, 0x503c, 0x5042, 0x644b
dscparadise: .word 0x8419, 0x842b
dsctrident: .word 0x501e, 0x502b, 0x503c, 0x8419, 0x841e, 0x842b, 0x843c
dsctseng: .word 0x503c, 0x6428, 0x8419, 0x841c, 0x842c
dscvideo7: .word 0x502b, 0x503c, 0x643c, 0x8419, 0x842c, 0x841c
.text
endtext:
.data
enddata:
.bss
endbss: