
hh

Chapter 5 ❖

Object-Oriented Programming
In the imperative programming paradigm that has dominated the way pro-
grammers think about solutions to problems for the past twenty years or so, a
program consists of one or more procedures that transfer control among
themselves and manipulate one or more data items to solve a problem. Ob-
ject-oriented programming (OOP) is a different paradigm based on Simula’s
classes. Many people like it because it allows code to be reused in an orga-
nized fashion.

Object-oriented programming is an area of current research. There is an
annual ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA).

1 ◆ DEFINITIONS
An object-oriented program consists of one or more objects that interact
with one another to solve a problem. An object contains state information
(data, represented by other objects) and operations (code). Objects interact by
sending messages to each other. These messages are like procedure calls;
the procedures are called methods. Every object is an instance of a class,
which determines what data the object keeps as state information and what
messages the object understands. The protocol of the class is the set of mes-
sages that its instances understand.

Objects in object-oriented programming correspond to variables and con-
stants in structured programming. Classes in object-oriented programming
correspond to types: Every object of a particular class has the same structure
as every other object of that class.

Objects are a form of abstract data type, in that if two objects respond to
the same messages in the same way, there is no way to distinguish them.
Such objects may be freely interchanged. For example, I might have two
Stack objects that respond to push and pop messages. One object might inter-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

On-line edition copyright  1996 by Addison-Wesley Publishing Company. Permission is
granted to print or photocopy this document for a fee of $0.02 per page, per copy, payable to Addi-
son-Wesley Publishing Company. All other rights reserved.

139

nally use an array, the other a linked list. The two stack objects are indistin-
guishable to their clients. I might even have an array of stacks, some of
whose components are implemented one way, while others are implemented
the other way.

The term object-oriented has started to appear prominently in many ad-
vertisements, but people disagree about what object-oriented programming is
and is not. The consensus seems to be that a programming language must
support data encapsulation, inheritance, and overloading to be called an ob-
ject-oriented programming language.

Data encapsulation dictates that an object A that wishes to examine or
modify another object B may do so only in ways defined by B’s protocol. In
other words, the data associated with an object is hidden from public view.
Only the operations an object supports are known to its clients. Data encap-
sulation makes it unlikely that changes in the implementation of an object or
extensions to its protocol will cause failures in the code for unrelated objects.
As long as the object’s new protocol is a superset of its old one, code that relies
on the old protocol will continue to work correctly.

Inheritance allows one class to share the properties of another. For ex-
ample, Smalltalk includes the predefined class Magnitude, which defines sev-
eral operations, including max (maximum). Any class that inherits from
Magnitude, such as Integer, inherits this operation. The max operation for all
subclasses of Magnitude is thus defined in one place, so any enhancements or
corrections to the max operation become available automatically to all such
classes. Inheritance is used in practice for two purposes: (1) to indicate that
the new class specializes the old class, and (2) to allow the new class to use
code from the old class. Inheritance makes the job of enhancement and main-
tenance much easier.

Overloading dictates that the code invoked to perform an operation must
depend not only on the operation but on what sort of objects the operation is
to manipulate. For example, the max operation provided by the Magnitude
class is defined in terms of the > (greater than) operation. The > operation
performed to obtain the larger of two integers and the > operation performed
to obtain the larger of two real numbers are two different operations. Over-
loading ensures that the appropriate > operation is performed in each case.
Overloading makes it possible to define an operation such as max in an ab-
stract sense. So long as the parameters to the operation exhibit the appropri-
ate behavior (in this case, they define >), the operation will succeed.

2 ◆ A SHORT EXAMPLE
The principal advantage claimed for object-oriented programming is that it
promotes reuse of valuable code. If an abstract data type has been imple-
mented as a class, then a related data type can be implemented as a subclass,
automatically reusing the code that still applies (by inheriting it) and redefin-
ing those operations that differ (by overloading the old names with new im-
plementations).

For example, consider the abstract type Collection, values of which are
unordered groups of integers, where individual integers may appear more
than once in a collection. Such an abstract data type would have several op-
erations, such as the following:

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

140 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

141

insert(C : reference Collection;
what : value integer)

present(C : reference Collection;
what : value integer) : Boolean;

remove(C : reference Collection;
what : value integer)

write(C : reference Collection)

The implementation of collections could use a linked list or an array. Let’s
not worry about what to do if there is an error, such as inserting when there
is no more space, or removing an integer that is not in the collection; perhaps
an exception mechanism (discussed in Chapter 2) could be used.

Collections sometimes have special requirements. I might want, for exam-
ple, the related data type Set, which makes sure that an item is not inserted
multiple times. Object-oriented programming lets me declare a class Set as a
subclass of Collection, inheriting all the operations, but letting me reimple-
ment the insert routine.

A different related data type is Queue, which is different in two ways.
First, it must retain the order of inserted values. Second, the remove opera-
tion has a different form:

remove(Q : reference Queue) : integer;

I would define a class Queue as a subclass of Collection. Depending on the
implementation of Collection, I may be able to reuse most of its code or very
little. If I end up rewriting major amounts of code, I might decide to use the
Queue-friendly code in Collection in order to save duplication of effort.

Finally, I may wish to introduce the type InstrumentedQueue, which has
one additional operation:

report(I : reference InstrumentedQueue)

This operation writes the number of insertions and deletions that have been
performed on the given queue. In order to reuse the statistics-gathering facil-
ity in other programs, I might implement it as a new class Statistic with op-
erations increment and report (not to be confused with the report provided
by InstrumentedQueue). Objects of class InstrumentedQueue would contain
extra fields of type Statistic to hold the number of insertions and deletions.

The classes I have introduced form a tree, as shown in Figure 5.1.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

2 A SHORT EXAMPLE

Figure 5.1 Class
hierarchy

Statistic

InstrumentedQueue

QueueSet

Collection

The solid lines indicate which classes are subclasses of others. The dashed
line indicates that InstrumentedQueue has local fields of class Statistic.

A value of class Collection has only the operations from that class. It
would not be appropriate to invoke a report operation on a Collection value.
If the compiler can tell the class of any variable, then it can determine which
operations are valid and which code to invoke. However, as you will see later,
there is good reason to postpone binding the actual value with variables. I
might want to invoke report on a variable and let it be decided at runtime
which version of report is to be invoked, if any. The compiler might therefore
need to generate code that decides at runtime which operations are valid and
which code to invoke. We will see that object-oriented programming lan-
guages differ in the extent to which they allow such deferred binding.

I might want to generalize these classes to allow elements to be not just
integers, but of any type, such as reals, records, and even other classes. In
other words, I might want to build polymorphic classes.

This chapter starts with a brief look at Simula, the ancestor of all object-
oriented programming languages, to introduce the concepts and the issues
surrounding object-oriented programming. I then turn to Smalltalk, a good
example of object-oriented programming, in which most binding is performed
at runtime. Smalltalk uses dynamic typing, deferred binding of operations,
and even deferred declaration of classes. Smalltalk is a “pure” language, in
the sense that everything in the language follows the object-oriented
paradigm. I also discuss C++, which is a hybrid language that adds support
for object-oriented programming to C. It uses static typing, static binding of
operations (by default), and static declaration of classes.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

142 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

143

3 ◆ SIMULA
Object-oriented programming began when Simula introduced a novel concept:
A record may contain a procedure field. Such records are called classes.1 As
an example, consider Figure 5.2.

Figure 5.2 class Stack; 1
Size : 0..MaxStackSize := 0; -- initialized 2
Data : array 0..MaxStackSize-1 of integer; 3

procedure Push(readonly What : integer); 4
begin 5

Data[Size] := What; 6
Size := Size+1; 7

end; -- Push; 8

procedure Pop() : integer; 9
begin 10

Size := Size-1; 11
return Data[Size]; 12

end -- Pop; 13

procedure Empty() : Boolean; 14
begin 15

return Size = 0; 16
end; -- Empty 17

end; -- Stack 18

variable 19
S1, S2 : Stack; 20

begin 21
S2 := S1; 22
S1.Push(34); 23
if not S2.Empty() then S2.Pop() end; 24

end; 25

Classes are like types; variables may be declared of a class type, as in line 20.
Each such declaration introduces a new instance of the class, that is, a new
object. The object contains fields that are variables (that is, instance vari-
ables) and fields that are procedures (that is, methods). Object variables can
be assigned (line 22); objects can be manipulated by their methods, which are
named just like fields (lines 23 and 24). The three methods of Stack all have
an implicit parameter: the stack object itself. Therefore, the call in line 23
implicitly acts on stack S1.

A problem with classes is that a binary operation, such as testing two
stacks for equality, must be performed by either the first or the second object,
taking the other object as a parameter, as shown in Figure 5.3.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Simula’s classes are the ancestors of Pascal’s records and coroutines (Chapter 2), in addi-
tion to object-oriented programming.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

3 SIMULA

Figure 5.3 class Stack; 1
Size : 0..MaxStackSize := 0; -- initialized 2
Data : array 0..MaxStackSize-1 of integer; 3

procedure Equal(readonly Other : Stack) : Boolean; 4
begin 5

return Other.Size = Size and 6
Other.Data[0..Other.Size-1] = 7

Data[0..Size-1] -- equality of slices 8
end; -- Equal 9

... -- other procedures as before 10
end; -- Stack 11

variable 12
S1, S2 : Stack; 13

begin 14
if S1.Equal(S2) then ... 15

end; 16

In lines 6–7, fields Size and Data of the implicitly passed Stack have simple
names, but the variables of Other, which is explicitly passed, must be quali-
fied by the object intended. (If needed, the pseudovariable Self may be used
to name the implicit object explicitly.) Invoking the Equal method in line 15
shows how asymmetric the binary operation has become. The same problem
appears in Smalltalk, but is solved in C++, as you will see below.

In this example, I have allowed the Equal method of one object to access
the instance variables of another object of the same class. Object-oriented
languages differ in how much access they permit to instance variables and
how much the programmer can control that access. I will return to this issue
when I discuss C++.

Simula allows new classes to inherit instance variables and methods of old
classes. Subclasses raise the issues of assignment compatibility, overloading
of procedures, and dynamic binding of procedures, all of which are discussed
in detail below.

4 ◆ SMALLTALK
Smalltalk is the name of a family of programming languages developed at Xe-
rox PARC (Palo Alto Research Center) as part of the Dynabook project. Dyn-
abook was envisioned as the ultimate personal computer — small, portable,
with excellent graphics and virtually unlimited memory and computing
power. Smalltalk was designed as Dynabook’s programming language.

Smalltalk has gone through a long evolution, including Smalltalk-72,
Smalltalk-76, Smalltalk-78, and Smalltalk-80. Many individuals have con-
tributed to the development of its variants, most notably Alan Kay, Daniel In-
galls, and Peter Deutsch. I will consider only Smalltalk-80, and whenever I
say “Smalltalk,” I mean Smalltalk-80. A standard Smalltalk reference is
known as the Blue Book [Goldberg 83].

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

144 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

145

Smalltalk is remarkable in many ways. It has a very elaborate program
development environment, with bit-mapped graphics and a variety of spe-
cially designed utilities for entering, browsing, saving, and debugging code.
Even though syntactic forms exist for entering entire programs, they are sel-
dom used. I will not discuss the program development environment at all.
Instead, my examples will be in the “file-in” syntax used for bringing pro-
grams in from text files.

My primary interest is in the object-oriented programming model that
Smalltalk presents. In Smalltalk, both data and program are represented as
objects. Integers are objects, complex data structures are objects, all
Smalltalk programs are encapsulated into objects. Objects interact through
messages, which are requests for an object to perform some operation.

Messages are philosophically different from conventional procedure and
function calls in that they request an operation rather than demanding it. An
object may act on a message, it may pass the message to another object, or it
may even ignore the message. Objects cannot directly access the contents of
other objects. An object can send a message requesting information about an-
other object’s internal state, but it cannot force the information to be pro-
vided. Objects thus represent a very tightly controlled encapsulation of data
and function.

Objects differ in their properties. Each object is an instance of some class.
A class specifies the local data (called instance variables) and routines
(called methods). Together, I will refer to instance variables and methods as
members. Smalltalk classes are direct descendants of the classes of Simula.

4.1 Assignment and Messages
Assignment binds an object to an identifier, as in Figure 5.4,

Figure 5.4 count := 10

which binds the integer object 10 (that is, the particular instance of the class
Integer that represents the number 10) to the identifier count. Count tem-
porarily acquires type integer. Smalltalk has no type declarations for vari-
ables, but objects are typed by their class. Assignment statements are also
expressions; they return the value of the right-hand side.

Literals are provided for some objects. These include numbers (integer or
real), single characters (for example, $M or $a, where $ quotes a single charac-
ter), strings (for example, ’hi there’), symbols (for example, #red, #left,
where # quotes symbols), and heterogeneous arrays (for example, #(1 $a
’xyz’)). Literals actually refer to unnamed objects of an appropriate class
that are initialized to the appropriate values. Literals are no different from
other objects — the protocol of their class defines the messages they will re-
spond to.

Smalltalk predefines several objects, including nil (the only instance of
class UndefinedObject), true (the only instance of class True), and false (the
only instance of class False).

Expressions illustrate the way Smalltalk uses messages to define interob-
ject communication. The expression 1+2 does not pass the values 1 and 2 to a

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 SMALLTALK

+ operator to produce a result. Instead, the message selector + and the pa-
rameter 2 are sent as a message to the integer object represented by the lit-
eral 1. An integer object responds to a + message by adding the parameter
to its own value and returning a new object representing the correct sum.
The message selector + can be used in composing messages to other object
classes (for example, strings), so overloading of message selectors is trivially
provided. Ordinary usage is inverted — data aren’t sent to operators; rather
operators (and parameters) are sent to data. This inversion emphasizes
Smalltalk’s view that an object is an active entity, interacting with other ob-
jects via messages.

Smalltalk recognizes three classes of message selector: unary, binary, and
keyword. I will show unary and keyword selectors in bold font to make ex-
amples easier to read. A unary selector takes no parameters and appears af-
ter the object to which it is directed, as in x sqrt or theta sin.

Binary selectors look like ordinary operators; they are composed of one or
two non-alphanumeric characters. A message with a binary selector takes a
single parameter that follows the selector.

Keyword selectors allow one or more parameters to be included in a
message. A keyword selector is an identifier suffixed with : . For example,
the expression in Figure 5.5

Figure 5.5 anArray at: 3 put: ’xyz’

sends a message with two parameters to anArray (which happens to be an ar-
ray, as indicated by its name). The at:put: message specifies an array up-
date and is the standard way to access arrays (and symbol tables) in
Smalltalk. To read an array value, the program sends an at: message, such
as anArray at: 5. Unless parentheses are used, all keyword parameters are
gathered into a single message.

In the absence of parentheses, if unary, binary, and keyword selectors are
intermixed, unary selectors have the highest precedence, then binary selec-
tors, and finally keyword selectors. Parsing proceeds strictly from left to
right; there is no operator precedence. Figure 5.6, for instance,

Figure 5.6 anArray at: 2 + a * b abs squared

is interpreted as shown in Figure 5.7.

Figure 5.7 anArray at: ((2 + a) * ((b abs) squared))

An object that is sent a message is called the receiver of the message.
The response to a message is an object. A receiver often returns itself (possi-
bly after modifying its instance variables), but it may return a different object
entirely.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

146 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

147

4.2 Blocks
Smalltalk blocks represent a sequence of actions that are encapsulated into a
single object. Blocks are used to implement control structures as well as
functions. A block is a sequence of expressions, separated by periods and de-
limited by square brackets, as shown in Figure 5.8.

Figure 5.8 [index := index + 1. anArray at: index put: 0]

When a block expression is encountered, the statements in the block aren’t
immediately executed. For example, the code in Figure 5.9

Figure 5.9 incr := [index := index + 1. anArray at: index put: 0]

assigns the block to variable incr, but doesn’t perform the addition or array
update. The unary message selector value causes a block to be executed.
Thus incr value will increment index and zero an element of anArray. In
particular, [statement list] value directly executes the anonymous block.
The value returned by a block when it is evaluated is the value returned by
the last statement in the block.

Blocks are used in conditional and iterative constructs in an interesting
manner. Consider an if statement, which is coded in Smalltalk, by sending
two blocks (one for each branch) to a Boolean value, which selects the appro-
priate block and then executes it, as in Figure 5.10.

Figure 5.10 a < 0 1
ifTrue: [b := 0] 2
ifFalse: [b := a sqrt] 3

Our usual model of conditional statements has been inverted. A Boolean
value isn’t passed to an if statement; rather the if statement is passed to the
Boolean!

Repetitive execution is obtained by passing a loop body to an integer or to
a Boolean block, as in Figure 5.11.

Figure 5.11 4 timesRepeat: [x := x sin] 1
[a < b] whileTrue: [b := b sqrt] 2

The Boolean value a < b is enclosed in a block in line 2. The whileTrue: mes-
sage is only understood by blocks, not by Booleans. The reason for this design
is that the block can be reevaluated after each iteration, eventually resulting
in False and terminating the loop. A Boolean value is immutable, so it is
worthless for loop control.

Blocks can also take parameters and be used as functions. Block parame-
ters are prefixed with : and are separated from the block body by | , as in
Figure 5.12.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 SMALLTALK

Figure 5.12 [:elem | elem sqrt]

Parameters can be supplied by using one or more value: keyword selectors,
as in Figure 5.13.

Figure 5.13 [:elem | elem sqrt] value: 10 -- 10 sqrt

Anonymous blocks with parameters are handy for applying a function to an
array of elements. The keyword selector collect: creates an array by apply-
ing a block to each element of an array, as in Figure 5.14.

Figure 5.14 #(1 2 3 4) collect: [:elem | elem sqrt] 1
-- (1 1.414 1.732 2) 2

4.3 Classes and Methods
Since all objects are instances of classes, the properties of an object are de-
fined in its class definition. A class contains instance variables (each instance
of the class contains an instance of each of these variables) and instance
methods (each instance of the class responds to messages that invoke these
methods). Instance variables have values that are private to a single object.
Syntax rules require that instance variables begin with a lowercase letter.
(Uppercase letters are only used for shared variables, visible globally, such
as Object.)

Classes are themselves objects, and therefore are members (instances) of
some other class. For example, Integer belongs to Integer class. Integer
class is called a metaclass. All metaclasses belong to class Metaclass,
which is the only instance of Metaclass class, which is itself an instance of
Metaclass.

A new instance of a class is created by sending the message new to the cor-
responding class. Thus the code in Figure 5.15

Figure 5.15 anArray := Array new: 4

would create a new array object with 4 cells (each initialized to nil) and as-
sign it to anArray.

Programming languages that support abstract data types (and a class is a
glorified abstract data type) often allow the programmer to separate the de-
scription of a type (here, class) into a specification and implementation part.
Smalltalk does not let the programmer separate specification from implemen-
tation cleanly, but it does provide much of what you would expect from ab-
stract data types, particularly information hiding.

Figure 5.16 shows how to declare the abstract data type Stack.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

148 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

149

Figure 5.16 Object subclass: #Stack 1
instanceVariableNames: ’count elements’ 2
classVariableNames: ’MaxDepth’ 3
poolDictionaries: ’’ 4
category: ’Example’ 5

! 6

!Stack class methodsFor: ’creation’! 7
initialize -- sets default depth 8

MaxDepth := 100 9
! 10
new -- builds a new stack of default depth 11

ˆ super new init: MaxDepth 12
! 13
new: desiredDepth -- builds new stack of given depth 14

ˆ super new init: desiredDepth 15
! ! 16

!Stack methodsFor: ’initialization’! 17
init: depth 18

count := 0. 19
elements := Array new: depth 20

! ! 21

!Stack methodsFor: ’access’! 22
empty 23

ˆ count = 0 24
! 25
push: elem 26

count >= elements size 27
ifTrue: [self error: ’Stack overflow’] 28
ifFalse: [29

count := count + 1. elements at: count put: elem] 30
! 31
pop |top| 32

self empty 33
ifTrue: [self error: ’Stack is empty’] 34
ifFalse: [35

top := elements at: count. 36
count := count - 1. 37
ˆ top 38

] 39
! ! 40

The definition of a class first specifies its name (line 1), the names of the in-
stance variables (line 2), and some other things (lines 3− 6). For the stack ex-
ample, the instance variables are count and elements, the first an integer
counting how many elements are in the stack, and the second an array hold-
ing the stack items. Since Smalltalk is dynamically typed, these declarations
do not indicate any type.

Stack is a subclass of the class Object. You will see the implications of
subclasses later; for now, it suffices that class Object will respond to a mes-
sage of type subclass:instanceVariableNames:...category: and build a

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 SMALLTALK

new class. The ! symbol in line 6 tells the Smalltalk interpreter to accept
the previous expression(s) and evaluate them. In this case, evaluating the ex-
pression leads to the definition of a new class.

Methods are categorized for documentation sake; I have separated meth-
ods for creation (lines 7–16), initialization (lines 17–21), and access (lines
22–40). These names are arbitrary and have no meaning to Smalltalk itself.

Consider first the init: method (lines 18–20), which initializes the in-
stance variables count and elements. This method takes a formal parameter
called depth. To create the elements array (line 20), it sends a message to
class Array using a keyword selector new: to define its extent. The init:
method will (by default) return the stack object to which the message is sent.

The empty method (lines 23–24) tests count to determine if the stack is
empty. The ˆ symbol explicitly names the object to be returned by the mes-
sage, superseding the default, which is to return the stack object itself.

The push: method (lines 26–30) first tests if elements is full. It does so by
sending the size message to the elements array and comparing the result
with the current count of elements. If the stack has overflowed, the method
generates a diagnostic by directing a message with the error: keyword selec-
tor and a string parameter to itself. The destination of this message is speci-
fied by the pseudovariable self. (Pseudovariables are readonly variables
with a Smalltalk-specific meaning.) As I will explain in detail later, all ob-
jects inherit the capability to respond to certain messages, including error:.
The push: message to a stack object can therefore elicit an error: message to
that same object.

Finally, pop: (lines 32–39) tests if the stack is empty by invoking the ob-
ject’s own empty method. If so, pop: issues an error message; otherwise, it
modifies count and returns the popped element. This method shows how to
declare variables such as top local to a method invocation.

It is the responsibility of each method that modifies instance variables to
make sure that it leaves the object in a consistent state. For example, the
push: method must adjust count as well as placing the new element in ele-
ments. In Chapter 7, you will see that the possibility of many simultaneous
actions on the same object makes it harder to keep the internal state consis-
tent.

You have probably noticed that some of these methods are declared as
Stack methods, and others are Stack class methods. In general, most meth-
ods will be instance methods (here, Stack methods). Messages for these
methods are sent to individual instances of the class. However, building a
new instance pertains to the class, not to instances. Messages for such meth-
ods are sent to the class object itself and invoke class methods. For this rea-
son, lines 7–16 are Stack class methods.

The new method not only creates a new instance but also sends it an init:
message to cause it to initialize itself. Creation is accomplished by super new.
The pseudovariable super has the same meaning as self, except that it ig-
nores local redefinitions of inherited methods. I need super here because I
am redefining new, and I want to make sure that I get the original meaning of
new in lines 12 and 15.

Just as there are class methods, there are also class variables, which are
shared by all instances of the class. Syntax rules require that class variables
begin with an upper-case letter. In line 3, I declare a single class variable,

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

150 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

151

MaxDepth. I use it only in initializing new stacks (line 12) to build an array of
the required length. Although I only need a “class constant,” Smalltalk does
not provide either constants or readonly variables.

Class variables are conventionally initialized by a class method called
initialize (lines 8− 9). Initialize is called only once, just after the single
object corresponding to the class (such as Stack) is created.

A class can provide several alternative instance constructors. The exam-
ple shows both new (lines 11–12), which creates a stack with a default maxi-
mum depth, and new: (lines 14–15), which takes a parameter specifying the
maximum depth of the new instance. Overloading two selectors with the
same name causes no problems so long as one is unary and the other is key-
word.

4.4 Superclasses and Subclasses
There are two hierarchies of objects in Smalltalk. You have already seen one:
the hierarchy of instances and classes. Every object is an instance of some
class. Climbing up the hierarchy quickly leads to a cycle of Metaclass and
Metaclass class. The other, richer, hierarchy is built from the subclass and
superclass relations. Climbing up this hierarchy leads to Object, which has
no superclass. The Stack class of the previous example is a direct subclass of
Object.

Each new class is defined as a subclass of some existing class. A subclass
inherits all the members of its immediate superclass as well as those of its
indirect superclasses. You have already seen that instances of class Stack in-
herit the methods error: and new from Stack’s superclass Object. A subclass
may declare its own members and may introduce methods that override those
inherited from its superclass. When a reference to a message or a variable
appears in an object, it is resolved (if possible) in that object. Failing this, the
object’s superclass is considered, then the superclass of the superclass, up to
class Object. If no definition is found, a runtime error occurs.

Subclasses are used to extend or refine the protocol of an existing class.
In Figure 5.17, I define a subclass of Stack called IntegerStack. Inte-
gerStacks will limit stack elements to integers and will provide a new opera-
tion + , which adds corresponding elements of two stacks, yielding a new
stack, similar to vector addition.

I will add two additional methods, pos:, which returns the stack element
at a particular position, and currentDepth, which returns the current depth
of the stack. I need pos: and currentDepth because + can directly access
only its own stack, not the stack passed to it as a parameter. (The same
asymmetry of access plagues Simula, as discussed earlier.) I want these new
methods to be private to the class; they are to be used only by + , not by the
clients of the class. Unfortunately, Smalltalk does not provide a way to pre-
vent such misuse. Still, I have placed comments on lines 35 and 38 to indi-
cate my intent.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 SMALLTALK

Figure 5.17 Stack subclass: #IntegerStack 1
instanceVariableNames: ’’ 2
classVariableNames: ’’ 3
poolDictionaries: ’’ 4
category: ’Example’ 5

! 6

!IntegerStack methodsFor: ’access’! 7

push: elem 8
count >= elements size 9
ifTrue: [self error: ’Stack overflow’] 10
ifFalse: [11

elem class = Integer 12
ifTrue: [13

count := count + 1. 14
elements at: count put: elem 15

] 16
ifFalse: [self error: ’Can only push integers.’] 17

] 18
! 19

+ aStack |answer i| 20
(self currentDepth) = (aStack currentDepth) 21
ifFalse: [self error: 22

’Incompatible stacks for addition’] 23
ifTrue: [24

answer := IntegerStack init: (elements size). 25
i := 1. 26
self currentDepth timesRepeat: [27

answer push: 28
(elements at: i) + (aStack pos: i). 29

i := i + 1 30
]. 31

ˆ answer 32
] 33

! ! 34

pos: i -- a private method 35
ˆ elements at: i 36

! 37

currentDepth -- a private method 38
ˆ count 39

! 40

In line 12, the push: method checks that the class of the element about to be
pushed is, in fact, Integer. All objects answer the message class with the
class of which they are an instance. They inherit this ability from Object.

The class hierarchy based on the subclass relation is quite extensive. Fig-
ure 5.18 shows a part of the hierarchy.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

152 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

153

Figure 5.18 Object 1
| BlockContext 2
| Boolean 3
| | True 4
| | False 5
| Collection 6
| | Set 7
| | | Dictionary 8
| | | | SystemDictionary 9
| | | | IdentityDictionary 10
| | MappedCollection 11
| | Bag 12
| | SequenceableCollection 13
| | | OrderedCollection 14
| | | | SortedCollection 15
| | | Interval 16
| | | ArrayedCollection 17
| | | | CompiledMethod 18
| | | | ByteArray 19
| | | | String 20
| | | | | Symbol 21
| | | | Array 22
| | | LinkedList 23
| | | | Semaphore 24
| Magnitude 25
| | LookupKey 26
| | Number 27
| | | Integer 28
| | | Float 29
| | Date 30
| | Time 31
| | Character 32
| UndefinedObject 33

This hierarchy shows how different data types are related. For example, an
Integer is a kind of Number, but it has some extra methods (such as even, + ,
and printOn:base:) and some overriding methods (such as =). A Number is a
kind of Magnitude, but it has its own extra methods (such as squared and
abs, which are actually defined in terms of methods of the subclasses). A
Magnitude is a sort of Object, but it has some extra methods (such as <=).
Finally, an Object has no superclass, and provides methods for all other
classes (such as new and error:).

4.5 Implementation of Smalltalk
Smalltalk is designed to be portable. Ironically, Smalltalk has only recently
become widely available because of proprietary restrictions. Over 97 percent
of the Smalltalk package, including editors, compilers, and debuggers, is writ-
ten in Smalltalk. Smalltalk executes under a virtual machine that requires
6–12 KB of code. Creating a Smalltalk virtual machine for a new target ma-
chine takes about one staff-year.

The Smalltalk virtual machine consists of a storage manager, an inter-
preter, and a collection of primitive methods. The storage manager creates

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 SMALLTALK

and frees all objects (it uses garbage collection), and provides access to fields
of objects. The manager also makes it possible to determine the class of any
object. Methods are compiled into an intermediate form called “bytecode”
(since each operation is represented in a single byte). The interpreter exe-
cutes bytecode to evaluate expressions and methods. Primitive methods,
such as I/O, arithmetic operations, and array indexing, are implemented di-
rectly in machine language for fast execution.

To understand how Smalltalk is implemented, you must understand how
objects, classes and messages/methods are implemented. Objects are repre-
sented uniformly; they contain a header field (indicating the size of the ob-
ject), a class (realized as a pointer to the corresponding class), and the
instance variables of the object. If an object is of a primitive type, the object
contains bit patterns defining the value of the object to the interpreter. In-
stance variables in a programmer-defined object are represented by pointers
to the objects that the instance variables represent. The only exception to
this rule is the primitive class SmallInteger, which is limited to the range
from −16384 to 16383. Smalltalk provides other integer classes, admitting
values as large as 2524288. All objects are required to have an even address.
An odd address is an immediate representation of a SmallInteger, encoded
as the integer value concatenated with a low-order 1.

This representation of objects influences how operations are implemented.
In particular, consider assignment (that is, copying) of objects. Since most ob-
jects are accessed through a pointer, does a := b mean “copy b” or does it
mean “copy a pointer to b”? Smalltalk understands := to mean pointer copy-
ing; it is very fast. However, the class Object includes two copy methods:
shallowCopy and deepCopy. shallowCopy creates a new object, but pointers
in the new object reference the same objects as the pointers in the old object.
If b is assigned a shallow copy of variable a, and b contains an instance vari-
able s that is a stack, then both a and b will share the same stack. A message
to the stack that causes it to be changed (for example, pop) will be reflected in
both a and b. One the other hand, if a message to b causes its s to be as-
signed a different stack, this assignment won’t affect a’s instance variable s.

In contrast, deepCopy creates new copies of all instance variables in an ob-
ject. If b is assigned to variable a by deep copy, then a change to b’s instance
variables never affects a’s instance variables. Deep copying an object causes
all its instance variables to be deep copied, which can lead to infinite loops in
cyclic structures.

These distinctions also apply to equality testing. Smalltalk uses pointer
equality; it is possible to program shallow and deep equality operations as
well. Franz LISP provides all these operations, which can lead to confusion.

Classes are themselves objects, so they fit the same format as all other ob-
jects. For example, the class Stack is an object (of class Stack class). The
instance variables of a class are the variables that define the properties of a
class. Classes contain pointers to the superclass, class variables, and strings
representing the name of the class and its variables (for display purposes).
They also include “method dictionaries,” which are hash tables that allow
rapid access to methods. All messages are given a unique message code by
the Smalltalk compiler. This message code is searched for in the method dic-
tionaries of first the instance and then the class to determine if a correspond-
ing method exists. If it does, the dictionary contains a pointer to the bytecode

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

154 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

155

(or primitive method) used to implement the method.
Messages are implemented in much the same way as ordinary procedure

calls. The main difference is that the method to which a message is ad-
dressed is determined by the receiver of the message rather than by the
sender. To transmit a message to an object, the sender pushes the object and
the message’s parameters (if any) onto the central stack. It then saves its
own state (such as the program counter) and passes control to the appropri-
ate bytecode, determined by the search described above. Space is allocated to
accommodate the parameters as well as temporary variables for the method.
A link to the caller (to allow return) is saved. A link is also created to the ob-
ject containing the method that handles the message; this link allows access
to instance (and indirectly) class variables, as well as class variables of super-
classes. This device is very similar to the static chain used to implement im-
perative languages.

A given method always knows at compile time in which class or superclass
a given variable is defined. As a result, all variables can be addressed at a
known offset relative to some object (either the object handling the message
or some superclass). Method execution is comparatively fast, since variable
names don’t need to be resolved at runtime. Once a method is finished, it
uses a saved link to return to the caller and returns a pointer to the object
computed by the method.

Bytecode is quite compact and reasonably efficient to execute. The main
cost is that all computation is done with messages, and all messages must be
resolved at runtime to determine the method that will handle the message.
Consider Figure 5.19.

Figure 5.19 a := b + c

This program translates to the following bytecode sequence:

1. Push the address of b (the receiver of the message) onto the central
stack.

2. Push the address of c (the parameter) onto the stack.
3. Construct a message with the message code for + . Search for that code

in b’s instance dictionary, then its class dictionary, then superclass dic-
tionaries in turn. Send the message to the method that is found.

4. Pop the result off the stack and store it as a.

In an ordinary compiler, this program translates to two or three instruc-
tions if b and c are simple integers. Smalltalk doesn’t know until runtime
what b and c are. In the case of SmallIntegers, things aren’t too bad. The
addresses of b and c encode their class membership, and a primitive method
can be invoked. Nonetheless, substantially more than two or three instruc-
tions have been executed.

For all classes other than SmallInteger, a dictionary must be consulted to
determine the method that will handle the message. For example, + might
be used to concatenate strings or add stacks. The advantage of a using a
primitive method is that the overhead of creating local space and linking to
the method’s object are avoided; the operation is performed directly on the ob-
jects on the central stack, and the resulting object replaces them.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

4 SMALLTALK

4.6 Subtle Features
Blocks are implemented by closures. Even though a block may be executed in
an environment quite different from its defining environment, it can still ac-
cess its nonlocal variables correctly. Thus Smalltalk uses deep binding.
Smalltalk manages to avoid the pitfall of accessing deallocated regions of a
stack by using a garbage collector instead of a stack (with its explicit release)
to manage object store. The anonymous method in Figure 5.20 prints 4.

Figure 5.20 |innerBlock outerBlock aVariable| 1
outerBlock := [:aVariable | 2

innerBlock := [3
aVariable write -- write aVariable 4

] 5
] . 6
outerBlock value: 4 . 7
aVariable := 6 . -- Try to confuse the issue 8
innerBlock value -- writes 4 9

! 10

Smalltalk methods are perfectly capable of coercing their parameters; only
by looking at the documentation (or the implementation) can a programmer
be sure what types are accepted by a method and whether the method will co-
erce types.

Even more surprising is the become: method provided by Object (and
therefore available in all classes unless overridden). It is used as in Figure
5.21.

Figure 5.21 anObject become: anotherObject

After this message, all references to anObject and anotherObject are inter-
changed. Conventionally, anotherObject had no references before, so it now
acquires references. This facility can be used to build abstract data types
that change their implementation at some point. That is, in response to some
message, an object may execute the code in Figure 5.22.

Figure 5.22 self become: newObject

From that point on, all references to the old object are rerouted to the new ob-
ject, which could be of a different class entirely.

In many ways tree-structured inheritance rules are too restrictive. For
example, I might have a class DisplayItem that represents items that can be
graphically displayed on a screen. Objects of this class would respond to mes-
sages like rotate: or highlight. Another useful class might be Invento-
ryItem, which represents items that I might inventory. Objects of this class
would respond to messages like reportBacklog or nameSupplier. It would be
nice to allow some objects to be both DisplayItems and InventoryItems (for
example, a bumper or aircraft wing). This can only be done in Smalltalk 1.0
by making DisplayItem a subclass of InventoryItem or vice versa. Neither
alternative is attractive, because not all objects of one class necessarily belong

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

156 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

157

to the other. (For example, I might be able to display a Saturn V rocket, but I
probably won’t have it in my inventory.)

A means of achieving multiple inheritance, in which a class is a direct
subclass of more than one superclass, was introduced in Smalltalk 2.0. It is
complicated to use (none of the built-in Smalltalk classes uses it), because
there can be name conflicts among the multiple ancestral lines. Smalltalk 2.0
notices such conflicts at runtime and declares a conflict error. Since all
classes are subclasses of Object, a class that inherits multiply sees Object
along two different ancestry lines. The programmer needs to indicate
whether such multiply defined ancestors are to be treated as a single ancestor
or whether both are wanted. In the latter case, every invocation of a multiply
defined method or access to a multiply defined instance variable must be
qualified to indicate which ancestor is meant. In Eiffel, the programmer may
rename inherited identifiers to avoid such name conflicts. Circular inheri-
tance is always disallowed.

5 ◆ C++
C++ was developed at AT&T by Bjarne Stroustrup, who wanted to write
event-driven simulations for which Simula would have been ideal but would
also have been too inefficient. The original version of the language was devel-
oped in 1980; at that time it was known as “C with Classes” and lacked a
number of its present features. The name C++ was coined by Rick Mascitti in
1983 as a pun on the C operator ++ , which increments its operand. C++ is
explicitly intended as the successor to C. (The same pun has been used to
name [incr Tcl], an object-oriented enhancement to Tcl.) C++ was imple-
mented for some time as a preprocessor that generated C. Full compilers are
now available. C++ has an ANSI standard and a standard reference, the
ARM [Ellis 90], which also includes some of the design rationale. Of particu-
lar interest is Meyers’ book [Meyers 92], which explains how to use some of
the language features and also why C++ does things the way it does.

5.1 The Consequences of Static Binding
Most of the differences between C++ and Smalltalk can be explained by the
fact that C++ is designed to be an efficient, compiled language. It performs as
much binding as possible statically, not dynamically. Unlike Smalltalk, C++
is a statically typed programming language. Every identifier in a C++ pro-
gram has a type associated with it by a declaration. That type can be either
an ordinary C type or a class.

One consequence of static typing is that C++ does not allow classes to be
introduced at runtime, unlike Smalltalk, in which introducing a class is a
runtime operation accomplished by an appropriate invocation to the super-
class. For this reason, the class hierarchy based on the subclass relation is
less extensive than in Smalltalk. It is common for C++ programs to build
many top-level classes, whereas in Smalltalk, all classes are subclasses, di-
rectly or indirectly, of the class Object.

Another consequence of static typing is that classes are not themselves ob-
jects. C++ programs have no hierarchy of instances and classes. In this re-
gard, C++ displays less uniformity (in the sense introduced in Chapter 1)

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 C++

than Smalltalk. On the other hand, the result is perhaps easier to compre-
hend. C++ has no need to introduce metaclasses.

A third consequence of static typing is that polymorphism in C++ is much
more limited than in Smalltalk. It is not possible to build heterogeneous
stacks, for example, except by the awkward trick of declaring the elements to
be members of a statically declared choice type (in C++, called a “union”) or
by circumventing type checking by casting of pointers. However, C++ follows
Ada’s lead in providing generic classes. (Ada’s generic modules are discussed
in Chapter 3). I will show later how to implement a generic Stack class.

In order to generate efficient code, C++ tries as far as possible to bind
method invocations to methods at compile time. Every variable has a known
type (that is, its class), so the compiler can determine exactly which method is
intended by any invocation. If a subclass introduces an overriding method or
instance-variable declaration, then variables of that subclass use the new
method or instance variable. The programmer may still access the hidden
identifiers by qualifying accesses by the name of the superclass.

C++ must deal with variables declared to be of one class and assigned a
value of a subclass. In particular, any pointer variable may be assigned a
pointer to an object of its declared class C or any direct or indirect subclass
S.2 The compiler cannot tell whether this variable will be pointing to an ob-
ject of its declared class C; it may be dynamically assigned an object of sub-
class S. Therefore, the compiler cannot tell for certain which method to use if
S overrides a method of its superclass C. C++ solves this problem by distin-
guishing static and dynamic binding of methods.

By default, all binding is static. In order to force the compiler to generate
the more expensive code necessary to defer binding until runtime, the pro-
grammer must declare that the method in the superclass S is virtual. Ob-
jects of class S (and its subclasses) contain not only fields for the instance
variables, but also pointers to the code for all virtual methods.

It is also possible for the programmer to specify dynamic binding for a par-
ticular method and not have C implement that method at all. Such a method
is called pure virtual. In this case, subclasses of C are expected to provide
the method; it is erroneous to invoke a method that is not provided by an ob-
ject or one of its superclasses. For example, class Complex could be a subclass
of Magnitude, which could define a max operation. In Smalltalk, if you send a
max message to a Complex object, the inherited version of max will be automat-
ically invoked; all binding is dynamic. This method might in turn invoke the
> method, which is also provided by Magnitude. However, Magnitude’s ver-
sion of > is not meant to be invoked; it is meant to be overridden by a
method introduced in subclasses like Complex. Magnitude’s > method just
generates an error message. In C++, the > method would be declared as a
pure virtual method of Magnitude, and Complex would be obliged to provide it.

If the programmer knows that a particular pointer (declared to be point-
ing to a value of class C) in fact references a value of subclass S, a method spe-
cific to S may be invoked by fully qualifying it with the subclass name. This
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 Simula has exactly the same problem and uses the same solution. However, in Simula,
all variables of object type are actually pointers to objects; in C++, a variable may either have a
stack-based value or point to a heap-based value.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

158 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

159

qualification leads to a runtime check to make sure the value is in fact of
class S.

5.2 Sample Classes
I will rely on examples to describe C++. The syntax of C++ is compatible with
the syntax of C; the examples use correct C++ syntax. The first example
shows how to introduce complex numbers in C++, even though the standard
C++ library already includes an implementation of complex numbers.

I first declare a new class Complex and make it a subclass of Magnitude,
which I will not show here. A Complex object contains two floating-point
numbers, one to hold the real part of the number and one to hold the imagi-
nary part. In Smalltalk, a program creates a new class dynamically by send-
ing a message to its intended superclass, in this case Magnitude. In C++, the
programmer creates a new class statically by declaring it, as in Figure 5.23.

Figure 5.23 class Complex : Magnitude { 1
double realPart; 2
double imaginaryPart; 3

}; 4

The braces { and } take the role of begin and end. The class Complex is de-
clared in line 1 to be a subclass of Magnitude. Top-level classes omit the colon
and the name of the superclass. Complex contains two instance variables, re-
alPart and imaginaryPart, both declared to be of type double. Instance vari-
ables are called “data members” in C++, and the methods are called “member
functions.” I will continue to follow Smalltalk nomenclature for consistency.

The first operation I will declare is to create and initialize a complex num-
ber. The Smalltalk class inherits a method called new from its superclass for
this purpose. The C++ compiler provides a default new function that is passed
a hidden parameter that specifies the amount of space to be allocated from
the heap; an explicit allocator function can be provided if the programmer de-
sires. Complex variables can also be allocated from the central stack in the
normal manner without recourse to the new function, as in Figure 5.24.

Figure 5.24 Complex *pz = new Complex; // allocated from the heap 1
Complex z; // allocated from the central stack 2

The comment delimiter in C++ is // . The * in line 1 declares pz as a
pointer type, pointing to objects of type Complex. The proper version of new is
specified by adding the class name.

I will rely on the defaults provided to allocate Complex objects; however, I
must provide a way to initialize such objects. In Smalltalk, I would establish
a real:imaginary: method to set the values of a Complex object. C++ allows
the program to provide an initializer (also called a ‘‘constructor’’) and a final-
izer (also called a ‘‘destructor’’) for each class. The initializer is called each
time an object of the class is created (either explicitly or implicitly, as when a
parameter is passed by value), and the finalizer is called whenever an in-
stance of the class goes out of scope or is explicitly freed. Initializers can be
used to establish values of instance variables; finalizers can be used to free

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 C++

storage pointed to by instance variables. Both are good for gathering statis-
tics.

A reasonable declaration of Complex, including some procedure headers
that I will need later, is given in Figure 5.25.

Figure 5.25 class Complex { 1
private: // the following are generally hidden 2

double realPart; 3
double imaginaryPart; 4

public: // the following are generally visible 5
Complex(); // initializer 6
Complex(double,double); // another initializer 7
˜Complex(); // finalizer 8
Complex operator << (ostream); // write 9
int operator > (Complex); // compare 10

}; 11

Lines 6–10 introduce methods. C++ does not use a keyword procedure;
the presence of the parentheses for the parameter lists indicates that proce-
dures are being declared. The fact that the procedures in lines 6–7 have the
same name as the class is understood to mean that they are initializers. The
compiler resolves the overloaded initializer identifier by noting the number of
parameters and their types. The name of the finalizer is the name of the
class preceded by a tilde ˜ , as in line 8. Initializers and finalizers do not ex-
plicitly produce a result, so they are not given types. The operators << , used
for output, and > , used for numeric comparison, are overloaded as well (lines
9–10). The ostream type in line 9 is a class used for output and declared in a
standard library. Comparison returns an integer, because C++ does not
distinguish Booleans from integers. The operator procedures do not require
two parameters, because a Complex value is understood to be presented as the
left-hand operand.

So far, the example has only included the method headers, that is, the
specification of the methods. The implementation of each procedure (declara-
tions of local variables and the body) may be separated from the specification
to promote modularity. C++ also allows the implementation to be presented
immediately after the method specification (within the scope of the class dec-
laration). Immediate placement informs the compiler that the programmer
intends calls on such methods to be compiled with inline code. It is usually
better programming practice to separate the implementations from their
specifications, perhaps in a separate file. Figure 5.26 presents separate im-
plementations of the initializers specified in Figure 5.25:

Figure 5.26 Complex::Complex() 1
{ 2

realPart = 0; 3
imaginaryPart = 0; 4

}; 5

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

160 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

161

Complex::Complex(double real, double imaginary) 6
{ 7

realPart = real; 8
imaginaryPart = imaginary; 9

}; 10

// sample usage in a declaration 11
Complex z1 = Complex(5.0, 7.0); 12
Complex z2; // will be initialized by Complex::Complex() 13

In lines 1 and 6, the procedure names are qualified by the class name. C++
uses :: instead of . to indicate qualification. In lines 3, 4, 8, and 9, in-
stance variables are named without any qualification; they refer to the vari-
ables in the instance for which the procedure is invoked.

The next operation (Figure 5.27) prints complex values; the specification is
in line 9 of Figure 5.25.

Figure 5.27 Complex Complex::operator << (ostream output) 1
{ 2

output << realPart; 3
if (imaginaryPart >= 0) { 4

output << ’+’; 5
(output << imaginaryPart) << "i"; 6

} 7
return *this; 8

}; 9

main() { // sample usage 10
z1 << cout; // cout is the standard output stream 11

} 12

The way I have defined the Complex operator << (line 1) requires that it out-
put complex values as shown in line 11, instead of the more stylistic cout <<
z. There is a way to define the operator that avoids this reversal, but it is
more complicated; I will show it later. Line 6 shows that the << operator for
doubles returns the stream; the stream is then given another << message
with a string parameter. Clearly, << is highly overloaded.

A Smalltalk > method for Complex must have access to the instance vari-
ables of both operands. That is, the object receiving the > message must be
able to inspect the instance variables of the parameter. But Smalltalk objects
never export instance variables. The IntegerStack example in Figure 5.17
(page 152) shows how to wrestle with this problem; I needed to define private
selector methods. Alternatively, I could have introduced a magnitude unary
operator. Neither solution is particularly elegant.

C++ addresses this concern by allowing the programmer to relax the walls
of separation between objects. Members can be declared public, protected, or
private. By default, instance variables are private. The procedures shown in
Figure 5.25 (page 160) are declared public. The following chart shows what
accesses are permitted for each level of security.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 C++

Same Friend Subclass Client

Smalltalk instance variables n — y n
Smalltalk methods y — y y
C++ public members y y y y
C++ protected members y y y n
C++ private members y y n n

Each entry shows whether a member of an object O of class C is exported to
various contexts. “Same” means other objects of the same class C. C++ allows
such contexts access to instance variables; Smalltalk does not. Therefore, the
> operator in C++ has permission to access the instance variables of its pa-
rameter. “Friends” are procedures or classes that class C declares to be its
friends. Friends are permitted to refer to all members of instances of C. More
restrictively, a method M may declare procedures and classes to be its friends;
those friends are permitted to invoke M even though M may be hidden to oth-
ers. “Subclass” refers to code within subclasses of C. Subclasses have access
to all members except for private ones in C++. “Clients” are instances of
classes unrelated to C.

The design of C++ makes it easier to deal with binary operations that take
two instances of the same class than in Smalltalk. All instance variables of
one instance are visible to the other. For example, the implementation of
> (the specification is in line 10 of Figure 5.25 on page 160) can inspect the
instance variables of its formal parameter right (see Figure 5.28).

Figure 5.28 int Complex::operator > (Complex right) 1
{ 2

double leftmag, rightmag; 3
leftmag = (realPart * realPart) + 4

(imaginaryPart * imaginaryPart); 5
leftmag = (right.realPart * right.realPart) + 6

(right.imaginaryPart * right.imaginaryPart); 7
return leftmag > rightmag; 8

} 9

C++ lets subclasses further restrict the visibility of identifiers by explicitly re-
declaring all inherited public and protected identifiers protected or private.
(Subclasses do not inherit private identifiers.)

Other security arrangements are possible. In Oberon-2, instance vari-
ables may be exported read-write, exported readonly, or not exported at all
[Reiser 92]. Oberon-2 does not distinguish between exports to other classes
and inheritance by subclasses.

Polymorphism in C++ is achieved by generic classes. A generic Stack
class that can be instantiated (at compile time) to become a class of any given
type, including a stack of stacks, can be written as in Figure 5.29.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

162 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

163

Figure 5.29 #define MAXSIZE 10 1

template <class BaseType> class Stack { 2
private: 3

BaseType elements[MAXSIZE]; 4
int count; 5

public: 6
Stack() { // initializer 7

count = 0; 8
} 9
void Push(BaseType element) { 10

elements[count] = element; 11
count = count + 1; 12

} 13
BaseType Pop() { 14

count = count - 1; 15
return(elements[count]); 16

} 17
int Empty() { 18

return(count == 0); 19
} 20
friend ostream 21

operator << (ostream output, Stack<BaseType> S) { 22
int index; 23
output << "["; 24
for (index = 0; index < S.count; index++) { 25

output << S.elements[index]; 26
if (index+1 == S.count) break; 27
output << ","; 28

} 29
output << "]"; 30
return(output); 31

} // << 32
}; // Stack 33

main(){ // sample usage 34
Stack<int> myIntStack; 35
Stack<float> myFloatStack; 36
Stack<Stack<int> > myRecursiveStack; 37
myIntStack.Push(4); 38
myIntStack.Push(8); 39
cout << myIntStack; // [4,8] 40
myFloatStack.Push(4.2); 41
cout << myFloatStack; // [4.2] 42
myRecursiveStack.Push(myIntStack); 43
cout << myRecursiveStack; // [[4,8]] 44

} 45

The definition in line 1 effectively declares MAXSIZE a constant with value 10.
The template declaration in line 2 indicates that Stack is parameterized by a
type (literally, by a class). I have ignored all error conditions in the methods
for simplicity’s sake. The declarations in lines 35–37 show how to supply pa-
rameters to the generic class; a generic class must have all parameters bound
in order to declare a variable. The compiler compiles a specific class sepa-

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

5 C++

rately for each instantiation of the generic class. In this example, three spe-
cific classes are compiled. Line 37 shows that it is possible to declare stacks
of stacks of integer. (The extra space between the > characters is needed to
prevent the parser from misinterpreting them as the single >> operator.)
The header for the overloaded operator << (lines 21–32) is unusual; it is de-
clared to be a friend of ostream, so that the stream output routines have ac-
cess to the contents of the stack. The stack itself is passed as a parameter, so
that the output statements of lines 40, 42, and 44 can be written with cout on
the left, as is proper style in C++, not the right, as I have been doing previ-
ously.

6 ◆ FINAL COMMENTS
At first glance, object-oriented languages are just a fancy way of presenting
abstract data types. You could argue that they don’t present a new paradigm
of programming, but rather a structuring principle that languages of any sort
might employ. However, I would counter that Smalltalk and C++ have devel-
oped the concept of abstract data type into a new form of programming.

First, object-oriented programming provides a new view of types. The
type of an object is the protocol it accepts. Two objects are type-compatible if
they respond to the same set of messages. This view is highly abstract, be-
cause it doesn’t say the objects have the same form, only that they are func-
tionally interchangeable. There is no straightforward way to check type
compatibility.

Second, the nature of instantiation distinguishes a class from an abstract
data type exported from a module. Each instance is independent, with its
own data and procedures, although all instances may share common class
variables. Data types exported from a module may be instantiated, but the
exporting module itself cannot be. A module is much more of a static, com-
pile-time, passive entity. A class is more dynamic, with more runtime and ac-
tive qualities.

Third, the hierarchy of subclasses leads to a style of programming known
as programming by classification. The abstract data types are organized
into a tree, with the most abstract at the root and the most specified at the
leaves. Incremental modifications to a program are accomplished by intro-
ducing new subclasses of existing classes. Each new class automatically ac-
quires much of what it needs by reference to its superclass. Methods are
automatically overloaded. Programming by classification is an important tool
for achieving reuse of valuable code, and this tool goes well beyond the reuse
that comes from modularization into abstract data types.

Smalltalk is attractive in many ways. It provides a highly interactive and
integrated programming environment that uses the latest in computer tech-
nology (in short, a graphical user interface). Its object-oriented style provides
an interesting inversion of our usual view of programming. Objects are pre-
eminent, uniform, and autonomous. They cooperate by passing messages, but
no object controls any other. Objects are fairly robust, since the worst thing a
program can do is send one a message it can’t handle. In this case, the object
doesn’t fail, but rather ignores the message and issues an error.

Smalltalk is not without its problems, both real and perceived. It has only
recently become generally available for small machines. Smalltalk may have

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

164 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

165

been too quick to abandon concepts common in imperative programming lan-
guages. For example, it makes no provision for named constants; you must
create a variable and then be careful not to change it. This shortcoming could
easily be overcome without injustice to the design of the language. Similarly,
it would be nice to introduce some type checking (even if dynamically
checked) by allowing variables to have a type (that is, a class) specifier. Pro-
grams would be easier to read and less error-prone. It might also make ma-
nipulation of variables more efficient, particularly for primitive types. As a
small step in this direction, Smalltalk suggests that identifiers like anInte-
ger or aStack be used conventionally for variables whose class is meant to be
fixed. Of course, an identifier named anInteger need not actually map to an
integer under Smalltalk’s rules. Finally, Smalltalk provides no control over
whether identifiers are exported (instance variables aren’t, methods are) or
inherited (all are). A finer level of control, such as that provided by C++,
could improve the safety of programs.

C++ fixes some of these problems. First, types and methods are bound at
compile time. Numeric values and code blocks are not objects at all. There is
no need to understand expressions as evaluated by messages sent to objects.
The result is that C++ programs execute quite efficiently, because they usu-
ally avoid Smalltalk’s dynamic method binding, use ordinary procedure invo-
cation, and use inline code to accomplish arithmetic. Second, members can be
individually controlled with regard to export and inheritability. The concept
of friends allows identifiers to be exported only to instances of particular
classes.

However, C++ suffers from its ancestry; C is notorious for being error-
prone (the operators for equality and assignment are easily confused, for ex-
ample), syntactically obscure (complicated types are hard for humans to
parse), and unsafe (loopholes allow all type checking to be circumvented).

Other object-oriented languages have been designed, of course. Best
known perhaps is Eiffel [Meyer 92]. Nor is C the only language that has been
extended to give it an object orientation. Other good examples include CLOS
(the Common LISP Object System) and [incr Tcl]. Some people believe that
Ada 95 will be the most widespread object-oriented programming language in
a few years. Even object-oriented COBOL has been considered [Clement 92].

EXERCISES

Review Exercises
5.1 What are the consequences in C++ of static typing?

5.2 Does an object in Smalltalk require its own private stack? In C++?

5.3 Write a class in Smalltalk and/or in C for rational numbers, that is,
numbers that can be represented by an integer numerator and denomi-
nator. Instance variables should include both the numerator and the
denominator. Your implementation should always reduce fractions to
their lowest terms. You must overload all arithmetic and conditional op-
erators.

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

EXERCISES

5.4 Consider an array of stacks, some of whose components are imple-
mented one way, while others are implemented the other way. Is this a
homogeneous array?

5.5 How would you implement the array of stacks mentioned in Problem 5.4
in C++?

Challenge Exercises
5.6 Simula classes contain procedures. Unlike ordinary procedures, proce-

dures inside classes may not declare own variables, that is, variables
whose values are retained from one invocation to the next. If you want
to add such a feature, what would you like it to mean?

5.7 In Smalltalk, not everything is an object. Name three programming-
language entities that are not objects. Could Smalltalk be modified so
that they are objects?

5.8 Show how the timesRepeat: method in Figure 5.11 (page 147) could be
coded.

5.9 In line 12 of Figure 5.17 (page 152), show how an element of a different
class could masquerade as an Integer and bypass the type check.

5.10 True and False are subclasses of Boolean. Each has only one instance
(true and false, respectively). First, how can class True prevent other
instances from being created? Second, why not use the simpler organi-
zation in which Boolean has two instances? Hint: Consider the code for
ifTrue:ifFalse:.

5.11 Build a method for Block that accepts a for:from:to: message to im-
plement for loops. Don’t use whileTrue:.

5.12 Build a subclass of Block that accepts a for:in: message to implement
CLU-style iterators.

5.13 Defend Smalltalk’s design decision that error messages are to be gener-
ated by objects via messages to themselves, and that the error: method
is to be inherited from Object.

5.14 Why should Magnitude define methods like > but give them error-
generating code? In other words, what is the point of introducing pure
virtual methods?

5.15 In Smalltalk, a new class is constructed at runtime by sending a mes-
sage to its superclass. In C++, classes are constructed at compile time
by declaration. Show how the Smalltalk method is more powerful.

5.16 Enumerate what is missing in Smalltalk and in C++ for building ab-
stract data types.

5.17 What is the effect of a C++ class declaring that it is its own friend?

5.18 C is not block-structured. In particular, one cannot introduce a type
within a name scope. What complexities would be introduced if C++
were based on a block-structured language, and classes could be intro-
duced in a name scope?

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

166 CHAPTER 5 OBJECT-ORIENTED PROGRAMMING

167

5.19 Is a class a first-class value, a second-class value, or neither, in
Smalltalk and in C++?

5.20 In C++, say there is a class A with a protected instance variable varA.
Subclasses B and C inherit this variable. May instances of B and C ac-
cess each other’s copy of varA?

5.21 In Figure 5.29 (page 163), I went to considerable trouble to allow output
statements to place cout on the left of the << operator. Why was this
so important for this example?

Copyright  Addison-Wesley. Reproduction fee $.02 per page, per copy.

EXERCISES

