0.11(0.95)

Linux %% 0. 11 5t

e SO o

A Heavily Commented Linux Kernel Source Code

Linux Version 0. 11

BIERR 1. 2.2
(Revision 1.2.2)

XKl
Zhao Jiong

gohigh@sh163. net

www. plinux. org
www. oldlinux. org

2003-11-26

WA S

AAEXE Linux S8R R S8 A % (v0.10) 4= PR AR SCAFBEAT T VAR A i AV EREAN U], 5 AR A 1523 BE S E AR A I [h)
PR Linux 1 TAEHLBERAS 4 i iR 20 O BEAR Dl D22 S RMIBTIT Linux REUFT T S el . BLARPTEFE (K ARA UK,
HIZA R DR IEH S 21T, P Oa it 7 LINUX TR B ROR S, JH e (g 15 H5A R e R st e 4 BRAR A A% (K32 1
HLile b se L Linux PR RRA IARIT) 52 00 2k, PR T Linux RGEMA eI 8, A BB T 5% WAL Z 1]
(K FE LD AN G T i, 45 Tk 0.12(0.95) R A I FUIN B IR o 53 AM 21 T WRZIRARRS IO AL ER G b B AR LR R
[ISR Ui T 4 PR RIS A TIZRAS X (R 7 3% o AR AS P AR P AR USA R [LR 5 M s e AT A R Py A SC AR REAT 1 R4
VLMo BER N HEEA L0 BARBE O BBEE . AN SCIFII D RE A 21 AU PiRe . ARl i A BERY 1 B2
BIPRRAS (4 32 EE XA 7y o difin— BRI AR S VR 41 T QREEWTT Linux REEHI 5B T 0

Rt 1A

YE3E PR BR A L1 13 48 (A& 5O 1E 2 AR I8 B AR 52 25 T DA p A 3 A) A0 R0 43 270 1) PN 2% (L B HE Ak Fl
T H A 0k SR B, IR AR ARV 22 AR R R JE 2 Ak, 75 S5 3 RS I R 40 T L VP i 1F s 480 m) DU o v 1~ AR 45 TR A
H:gohigh@sh163.net, ok B E2K (5 22 R RGNS MUBCE+ TREWF 70 AT (L ifg DU ST~ 1239 5,18 %w:200092).

© 2002,2003 by Zhao Jiong
© 2002,2003 X4 FRAUITH

“RTFSC - Read The F**king Source Code ©!”

- Linus Benedict Torvalds

N 5.7 SCHED.C TR oottt 104
B ettt 1 5.8 SIGNAL.C L 116
BN O L I OO 1 BLOEXIT.C TR oot 122
AT PBFEASL Z AL oo 1 5.10 FORK.C TR 1oveeeeieeeeeeeeeeesee e sesen s 127
B I N AZ LB B AR 7 e, 2 NI Kok 1 TN 132
(58] 152 50 A YA QR [FE B R 2 5.12 VSPRINTE.C T2/ eieeeeieeeeeeeeeeee s 138
QAT PR) 132 R I AZ AR IRCAS oo 2 513 PRINTK.C T oo 146
e A 7 H A BIFERE AT oo 3 B.LAPANIC.C FEIF oot 147
AF R IARRA LT LT 2 e 3 BA5 AEE NG e 148
EXT2 XM RG S MINIX SCIERGE? e, 4 %6 B &R (BLOCK DRIVER).... . 149
LI BER oo 5 6L MR o 149
1.1 LINUX OSBRI oo 5 6.2 KT oo 149
1.2 PUZEZEIR oo, 9 6.3 MAKEFILE SCAF oo 149
1.3 AREE/ING oo 12 B.4 BLIH SEAF oo 151
== B.5 HD.C TR T oottt 154
2T LINUX POBERETRAT o 13 6.6 LL_RW_BLK.C FEFF coivevceieceieee e, 167
2.1 LINUX AZAREE o, 13 6.7 RAMDISK.C TS oo 171
2.2 LINUX WAZ RGARREEH oo, 14 6.8 FLOPPY.C Tt 175
2.3 LINUX PAZFEFZEEH] oo 15
2.4 LINUX Egﬁté%?’jﬁﬂ TFE oo 16 B 7E FRHBREEEF(CHARDRIVER)...... 189
2.5 LINUX WAL AR) H G5 oo 18 T HEIR oo 189
2.6 WIZRGSGH PRI R s 23 7.2 RARIIBERIIE oo, 189
2.7 LINUX WAZ IR G P S PRI o 23 7.3 MAKEFILE SCAE oo, 192
2.8 LINUX/MAKEFILE LA o 25 7.4 KEYBOARD.S T oot 194
2.9 ATE/NEE s 33 7.5 CONSOLE.C FR T e oviveeoeeeeeeeeeeee e eeeeaeeens 211
- 7.6 SERIAL.C TP ot 234
F W FISAREF (BOOT) o 3 TTRS_IOS FEIF wovveveeeieseeeses e 237
B IR e 35 A 2 2 (o o Y 5 240
3.2 BATIRE ... r” ... 35 7.9 TTY _IOCTL.C FEIT oo, 250
3.3 BOOTSECT.S FE/T cvvieeeeeceeeeee et 36
3.4 SETUP.S f%fgi% ... 43 8 WMFPLIEBMATH) o 257
3.5 HEAD.S T cvoveeeeeeeesee st 55 8.1 IR e 257
3.6 ATE/INGE (o 63 8.2 MAKEFILE 3L oo 257
8548 WHAMEREANIT) oo 65 8.3 MATH-EMULATION.C FE/F..cvivirererereiceeececvie, 258
R 65 B 9T IRRGE(FS) 261
4.2 MAIN.C BRI 1o 65 9.1 MEIR e 261
R N N 73 9.2 BRIHBERIIE oovooeeeveeeeeeeee s 261
- . 9.3 MAKEFILE ST oot 267
5T PRI KERNEL) o 7 9.4 BUFFER.C BT oottt 269
5.1 HEIR oo 75 9.5 BITMAP.C FE T et 283
5.2 MAKEFILE SXF i, 78 0.6 INODE.C FEJT oo 288
5.3ASM.S FET oo 80 9.7 SUPER.C FEIT oveeeeeeeeeeeeeeeeeeee e 298
5.4 TRAPS.C FEIT oo 87 9.8 NAMELC FEJF 1ot 306
5.5 SYSTEM_CALL.S PR/ oo, 94 9.9 FILE_TABLE.C /T couveviereveeevecee e 328
5.6 MKTIME.C FE/T wvvviieiiieieeiee s 102 9.10 BLOCK_DEV.C R rvvverereeereeeeereseessereeseesneen 328

9.11 FILE_DEV.C FE T i 331

9.12 PIPE.C FEIT ottt 333
9.13 CHAR_DEV.C FEFF coovevecrcveteeeeeeeceee e 337
9.14 READ_WRITE.C FEF oo ovirireeeeeece e 340
9.15 TRUNCATE.C FEJT 1 vt 343
9.16 OPEN.C FRJT oot 346
9.17 EXEC.C R oot 352
9,18 STAT.C R ottt 366
9. A9 FCNTL.C FEIT oottt 367
9.20 IOCTL.C FEIT oottt 369
FEI10E HEBEEMM) oo 371
101 BEIR oo 371
10.2 BARINBEREIR oo 371
10.3 MAKEFILE 3CF e, 375
10.4 MEMORY.C FE T vt 377
10.5PAGE.S TR P oot 390
11 F AESHINCLUDE) .o 393
L1 BEIR oo 393
11.2 INCLUDE/ H 3 R IISCAE (e 393
113 A0UTH SC o, 393
11.4 CONSTH A oo, 402
115 CTYPEH LA oottt 402
11.6 ERRNO.H SCA ottt 403
127 FONTLH SCE oot 405
11.8 SIGNAL.H 3L oot 407
11.9 STDARGH S ot 409
11.10 STDDEFH LA ot 410
1111 STRINGH A e 410
11.12 TERMIOS.H SCAF ot 420
11 A3 TIMEH S it 426
11,14 UNISTD.H SZA et 428
11.A5 UTIME.H SEAE o 433
11.16 INCLUDE/ASM/ H 3 T I ST o 435
1127 10H SEAE e, 435
11.18 MEMORY.H A ot 436
11.19 SEGMENT.H 3L oo, 436
11.20 SYSTEM.H LA oo, 439
11.21 INCLUDE/LINUX/ H 3% F ST oo 442
11.22 CONFIGH A oo, 442
11.23 FDREGH S 30 o 444
1124 FS.H S e 447

11.25 HDREG.H A ot 452
11.26 HEAD.H SCAH oottt 454
11.27 KERNEL.H A oo, 455
1128 MM.H S e 456
11.29 SCHED.H SCAH ot 456
11.30 SYS.H A et 464
LL3LTTYH S et 466
11.32 INCLUDE/SYS/ H 3 HH I S v 469
1133 STATH A o 469
1134 TIMES.H SCF oo, 470
1135 TYPES.H 3 o, 471
11.36 UTSNAME.H 3CA o, 472
1237 WAIT.H S0 e 472
B 123 FEE(LIB) oo, 475
12,1 HEIER oo, 475
12.2 MAKEFILE LA o 475
12.3 EXITCFEIT coiiiiceceeeeeee e 477
12,4 CLOSE.C T vt 478
125 CTYPE.C TS oot 478
12.6 DUP.C T oo 479
12.7 ERRNO.C TR T oot 480
12.8 EXECVE.C FEIT oot 480
12. 9 MALLOC.C FREJT ottt 481
12.10 OPEN.C TR oottt 489
12.11 SETSID.C FR T et 490
12.12 STRING.C FEJT oot 491
12,13 WAIT.C TR oottt 491
12.1AWRITE.C FRIT vt 492
H 138 BT H(TOOLS) ..o, 493
13,1 HEIR oo, 493
13.2 BUILD.C TR T vttt 493
BEZE TR oottt 501
B e 502
S A A S o 502
PSR 2 IAZEIESE R oo 505
B 5% 38086 TRHIBATELL oo 512
=L 1 [T 520

,II,

FE

ARATIE AT Linux #RAE R G AL A TAR BT T34

ABHEZEBF

ANAS) T2 J AR AR D IR M A AT BRGSO 58 B Linux A RZA RS EA T el LAY
XA R GUFEA D REMN S S5 ACRAF AT AL I o AR linux AAZA — A SE 48 IR 20 (0 LA
X linux #4FE RGTHIHA AR S S0 E SR AR

AAFEEHRERE LS LURIBE Linux REEN— BRI Ao BAT 2 I gn e dEat, HILE = 41k H
i feoHT N AZ AR IO RERE AR, S DI SERERSIE 2D PR UNIX R4 R G0 A A T AT S B AU S5
DU R0 o IR E I B B A NAZ S TR P ROKT- 2 18] HT, X870 38 NBHE Linux 22473
Jr ok (KT BB R AR R AR, T 17 3P 2013 2 LA LA o 1 AT 24) T B AR IR B AR R AN 2

MEEELRZA

H Ay & A Linux WAZR AR, BRGEIEH BB Linux WAZRCAS (41101 Redhat 7.0 {11 2.2.16
FROERREE) HEATHEIA, HET HAT Linux ARSI/ D C@dEF AR (Bl 2.2.20 M2 A7 268 75
ATARE 1, PR X S EE A AEXT Linux P AZIEACID AT IEBEPE L Bl IR BEVE MO UG IH , V8 22 RS SN 14 22,
W&o IR HFASAELS T X 92 B Linux P AZ A5 ¥ BT 1T 56 48) FILAR

Foli T 2R 5[] 35 B0 12 1) Scott Maxwell 2 5 (Linux WAL ATY FeA F =% Linux W 0K
M, T R AT P SERE AR A RE se A HEAR . 1 ELAT A2 i TR TR, Z PR3 XA Linux A
ARSI TI RS, W25 TR Z WAZSEIRAN Y, 5 an L A A% P A K 35S S SO AR (o)« AR N AZ AR e 52
A T HFE . S make SCEFIAE RS IR S AT S o DRIHERT T4k T-400 i SR K- 2 T) BR824 K i
B 21 A L R A

FHAFAI TR AR (Linux WAZIEAEE S04y —10, BEAFIXEA L 2 kb, X T—1L5%
HAR R Linux RGN HACEITFENUAR S ELEA, B FZ 155 i) 858 DL R AN B DR P A% I8
A5, BANEE EAENZE WAZ I SE RS2 720, DRNMAEFE NI TR LA T Bl 1o IXAEAR NBEE I 22 P AR
2 LA W) o Z AN AT, AR i 2= A0 2 B sk, e A HJa R A bl s S s o, 3
AAFAER AT LR B SE) , RZHNABIGE T -

John Lions ¥ (&[G UNIX YA M) — 1 ELAR 2 — 2% 3] UNIX REAE R 5 A R RS AR &F
(A EE, (HJ2 M HRH M UNIX V6 B, Hort R E800 F &3 A0S 2) 5 E i i) PDP-11 R AL
Gt 5 I DR [15 A 8 A O (1 05 A RS o gl 2 288 1) A K) TR A

A.S.Tanenbaum [(HAERS: Wil 55L& AH KEE ARG NZ LRGN BEE, (HiX
FPIRAUA R minix REEE—FE T BAAE A EZSEIPLE], 5 Linux PAZISEIA T l. R AE S 2]
A, FEAREARNUR M RI 255 T 10— 20 2% ST SR IR Linux Y AZJEARAS SR .

FEAE I SE PR UEAT 22 2 Il “H AR IISE, ANREFCIEBAR Linux WAZ R G0 RARSEBLIY
RS, JCHGZXHIRLE Linux REEYTAH BN 2 T A Linux 880 N AEAEHIISLE 4525 5] A% It 2
I, R A AAGE AR S5 A6 T AN RETE T Rt TR Jl e IXAEAR N Z AR 1Y Linux A RZ 2 3 B iR AT i 2s
WRBEABREHZ —,

N T BANZAS G, AR 322 H AR TSR D I RS I e A BRI R N, 0 S8 B4 Linux AZUR
AR HEAT AR, DA ERAE R GRS AT REAN S b s By AC3RAG 45 LI Bk . IR linux AZAT
A SEREMRZII B, XS linux BAE RGEMBREA AR s B IE BRI T

iR FHAREERFL?

Hir, CABIADIET Linux SN AZ R ETTH R RS NAZIRAS, 40 DIJ 1) x86 $
ER S Uclinux 45 (£ www.linux.org &1 TH), A LA HFL AVIRBE R Linux P AZEAR
2531 Al, HarE W E Cef NIEAEL SN)R R A ST P AE . Rk, Wi 532 Linux 510
PWRZRRAS TR ARAS, RS 2%) Linux RGN —FIT 2 A& e, I BEXFRERIN A Linux iR A RS
WAIRK I B

FEXT P AL AR R R b, MR ek I, FI A AR IEARRS LF- 9t H AT BT B0 A
AR . Ferh CBHE T H DI F LT BT A A DI RE B A 7. B (R RS
e i) —PHIYE# Leland L. Bach 7E 4 R GERE I LUSRAE R GEBEIEIN, GIN T —Mbl L f] A 0 fif 51
TR EHUSIC) RGUR B T AT RGP 1B v A SEBL B, T BRIt S 1 SRRt LR S = 281, X
REBAHB UL). X HLLEHE Linux MR HIARZRRASAE 22 200 5, Hae T J8ARY Leland (98 IR}
Linux AAZ2# AT TR, EARRE MR BRI R 2 . BERSAESS T BEJE A I 18] AR A EEAR Linux
WAL A AR J B

MR, AR A AR S TR R AT AN L Ak, P R Linux 5301 A RZ RO AN 35 05 kg UL S0
RYEVFS HISCRE . X L8 R GEHISCRS « ANSZRF acout AT SCPERN LS — 2L BLA WAL TR B 2% T R G
EHRFAA A Linux AR TAENUBSCOLAN T T, DX th e 2 P R A R L iz 3l
W2 ARAS, W LIONEE 2 S X B N AT L SE A

xR AENEE L EN

IE4n Linux R M0 NAE—FoBr 4L BeAs L pm i i, SRR — N R A EIEIBITHLE], — e
B Hys ALY (RTFSC — Read The Fucking Source Code). RGiA G & Mog# sk, BN L EHELARE
SR AFAE, (HIR 37 2N IR ST, s A R PR R R e, IF HANBEEE T — M EBr R4
S R T B

BRI [5 S RGP B EE (1 MJ.Bach 1) (UNIX $#:4E R4 W) Agigx UNIX
RIAE RGN TAR IR FIAT — 263038 B AR, (ESEBR B A 2 4800 B0 1E 20 R P 308 9 28 S) B A
PIAIRARTE T IE W AST BTt i), “VFr 2454 E KRB AL HEIR MRS 7, “ 250 FI U o 1 B
TERE RO L (I (R RS R 7T 58 45 20 11O, JLsiz, A il s A 2 — T ARAS, 15 & A Y B A R g
A R 7 WRZ R RS RIS . R ANGE L 3 B — A B E B RGeSl
(ST AE . NATEVEN Y B2 58 B AR IRARID 2 J5 s A S0 RG A — PR ITBA B, XA RS
PSR FEA IR ZI B . DUS FRIE B0 M B0 W AZ AR AT 4 ST I, ARG 2K m) i, AR |
HB HENTUR Hb B AF BT A AT IR P 2%

ANMAT IR ZE ()13 Y R A KB R AR

W2, WHTEFEREREA B IR EOR, MAPERZ A IR EL L, £ ME S Linux W
FRATEAT 2430, P 5 SRR ? A2 a6 K B AR RROAS AT LU A AR #3155 HET Linux
WARZSEA D RERCA ML, SCIER RN 010 RN AZAE N T 15 2 IR RS . R R R — 22 5 Linux Y
PR AATE) ZE it

10000000
1000000
100000
10000
1000
— — [aN] Lo © o~ (@] N [ap] Lo 0] S o~
(=) — — (@) O (o)) N Lo — (@)} [ap] [a\] —
S S S S 2 s 2 4 a8 S oa <
= = = = S =
- — — — [aN] (aN] [a\]
= = = = = =

FIHTHY Linux A AZUEACRS S A8 7E L B T ATINECR b, ARILPER, 0TI SERROA AT 58 A TR FH 1] 2 A
FIRERY, 1M 0.11 iR ANEEI 2 J AT ARG &L, [ARSE 4l AE— A R 2E . R/, Tk
R4,

T34, A RRAS TT LA S A P B OB A AR AS h AR A RO R 28454 1 R G 20 (I 9T (i
REFUSCAT R GE VFS. ext2 81 ext3 SUAF RS, WL RGE. B 2R WAEE BEHLHISE o

%A FEFHEMMAIR

FEBISRATSI, A Ay e HAT DU R — LS mb iR s AT A X 22 PR AE Tl . JL— 247K 80x86
Ab B2 S R AN AR IR AR B TR . B anml DL F R4 80x86 4ifE Tt (INTEL 80386 Programmer's
Reference Manual); L2455 80x86 Al 414 2 45 A4 A4 0 R 1R A R BB R . A3 JIX 7 T) B BHME 22 5
=00 H A WH AT Linux REEfE 8L

Ji4h, BT Linux REMAZSEIL, B RS M.J.Bach (1) (UNIX $4E RGeikih) — B EEA BT
HH, ARG VR A s R B A4 R HCR 1D, PIRED BB, FREE 2% 1%, o TR
(AW ETRE

Linus ZEcW)JT & Linux B4 RGN, ST Minix #2105 R 4. BlG0,)i Linux W% IR 5845 I ik
T Minix 1.0 SCHE RS, Ht, #EPEeA PN, A.S.Tanenbaum [P (BEERS:: Wit 52l WHEAE K
MZEM{E. {5 Tanenbaum [HHEIA 1) e—FhIE 171 BALIBIE WAL S B 2 [T (FEBACH), X
5 Linux WAZI TAENURIA—FE . PI0T DA S 2% Foh Ay o0 — e R 48 A D B 5 RS R SE L)
RESS

EHFHRARE IR ?

FIMERAAXT Linux 53 A AZ R A BRI 28 1 Linux £24E R SeRI A i i Tanenbaum sl b L2

i

225 (Linux is obsolete) AHVE—Ff, (Hilk 2= ABHNE, R &I, FIHATY 2] Linux Wi,
i AR BRSPS ARSI 2E R0, Ret s gitoifd, PR T. H Hox gkalidt
— DR WAL IS ()22 21T R RSE A . AEZ) EAR P2)G, RN RS ISR R B — N E
W SE R SE R MRS, TP e SN A A N AR 2R 5 Mt — D3 B RN 2) 3B POAZ IR ARES P AT A8 4, TS
T BT LM ARSI BT AR 58 3 54D o

Ext2 RS Minix XHERS?

HAT Linux 248 BT IR Ext2 (BUBCRTIN Ext3) SCIFRSGE, RAENE Lx ZEIPRINSCIE RS, H
DREVEIR I HILPEReAR AR e R [E , /2 H 1T Linux #4E R 50 EERARIARUESCIF RS AR, /E A% Linux
BAE RGOS AR BN T2 ST A I 8 2, sl MRS faplids o O IR B0 —NMRAE R ST e 311
B, JF HREAIL P57 R IR MR 2 A4 18 5225 3, AERE R ST I I AR RRCAS I,
LRGBS A B RE UL SEBn A T B, A f] PP e

Linux A% 0.11 bz b4 5 85 A 8T 1K) minix 1.0 SCAFREGE, A T Hf— MRIERGHH U RGN
SEPRAL N TAE R 2205 . IR 2 IEPE Linux BT ARZRCAHEA T 2% 2] I 2 22 R R 22—

FESERE Be A B n, AMERUE SR HUIXFEREIL: “X T Linux WEZ RS, RIAELTATTT .
VI, S AZAT 2 RHEHR L kP27 ST il Linux WAZ AR 38 20 (10 AR B BEAT G R T

[K
ey U
2002.12

1.1 Linux [FHEAERTR &

FHIFE Bk

ATEE G T Linux B/ RGGHEA . T AR RS, b B A o A A 25368 Linux RETH
WIRRASAE 2 2D R RIS DA o R FAABE] T3 FE L) Linux A RZRRAS 1EAT 27 21 (L ROAIAN A2 22 Ak B
LA TR EE— B 154 >

1.1 Linux BYE4E F1& B

Linux #:4/F 240 & UNIX #E RGER— M e 240, Bt T 1991 4/ 10 H 5 H GXAESH—IER
AN AT TE]D o UGS BT Internet 4, FE&Rl 4t A& Mt ML Z 44 3L RS R, Ble sl 4
RMF AT w2 —F UNIX B8 R4, I HATH A BOLE R K .

Linux #E/ERGEMEA: . A AT FR AR 24 MG DL R AN ES A UNIX BE RS MINIX #:4E R
45, GNU 1%, POSIX #r#EFT Internet 4% .

IR AR X LN EA L ZOKIB TR Linux IR R DIFE, MRS RE, mAINERSE .. 1HL
S A A A RPN FEABE 2 (UNIX. MINIX. GNU F1 POSIX, Internet [55 G iy 5 W., It LAAS F X
HPmR), SRJGHRYE Linux (6045 A Linus Toravlds M 154U EE G E 22 THEALETH, B0 BT AR LR
il — N H CIERAE RS, BT Linux WAZ 0.01 FRA A, LLS M IR Gr] X 3k s — 25— AN R EN 7 4 5t
hacker (35 BT fi Ja 4t EL A 583 16 1.0 RRACIX BEIN TR] & B2, BRI Linux (A7 1k 8 g s BT
N4,

8%, H AT Linux PAZIRAR T4 TR 2 T 2.5.52 Fit o 11 K 22 50 Linux 40 BT H 210 A R 2 R 1) 2.4.20
WA AZ o (HEA 5 2 MU A B R S IEAE TR R IR, ANRELRIE RSS2 M) X5 Linux 18— Bk R sk,
VZSCHEMPBEEMGNHE, KR AEL,

1.1.1 UNIX ¥ ER GRS

Linux #:/F 248 & UNIX H1E R GRS Ta A - UNIX 24 R 40 2% 55 [DLJR 525635 () Ken. Thompson
A1 Dennis Ritchie T* 1969 £ 5 {F DEC PDP-7 /NN EIT K K — AN I HAE R 40
i Ken Thompson 24 T fe7E W E A ¥ PDP-7 tHEAL EIsAT A S K AL PR iR 1T (Space travel) JiExK,
7E 1969 4F 5 R Fefth I N nIZK & iR e WP I E, 7E— N HWIFR I T unix B/ RG R A, il
FHI 2 BCPLIES (JEAMASHIES), J54 Dennis Ritchie T 1972 4E A MEIE SR C 1B S HHT Tk
5, {4 UNIX REGERNLRRAFE THE .

1.1.2 MINIX 46 & %

MINIX %4t Andrew S. Tanenbaum (AST) JF& . AST J&{t47 >% Amsterdam [Vrije K24 5
THENEE RS TAE, & ACM Al IEEE %R S D (At B UE IR0 NS IR 4 51). JE R £ T 100
L EE, 5 AUHPLTEE.

AST B HAEFEEEANY), (HRE RN A R (1914 FM AR BISE). MaEAL Bhs. MILT &
FIREE IPNR2E Berkeley A& I 2447 . TR G, kB TR 2024 Wb 5% 2
—HAT KA. JFREE Vrije K2ETTUAZCE . AT T o far 22 15 4K Amsterdam 24N 42 B I 40 40 13011
M6F AST SRkit, XA T, PRI IXFEAh o] AR S B A - 5L T

MINIX At 1987 “Egmifil), FEH T2 EE B E RS,) 91 AER IR /S 1.5, HAT HEA W
AL 1.5 BRI 2.0 i, MINZERAE KRG R 2ATH Rtk), BILEHBEAR, MR EATHC
SRR, WTLUNAFZ FTP Rk

BT Linux 245, o ma HIT & # Linus MRS, (B4R Linux 15 A R KR R IRk ok 77
LRFE minix (/4L BB AEAE— /NN RE 258, A Bl At 59 2 A6 Minix 19 R 25K .
PRI IX R T Linus 445 Linux. Linus IEFPME 73X AL,

VER— N EE RS, MINIX RS, EERENEMETH C ESMILGES SN AZHRL, X2
S UAF A 7 R 7 52 51 hacker BERS B B8 R MVEARHY, 8 2 X PP IEARHD & 4 AF i — B/ N Db
SEAPEE R o

1.1 Linux [FHEAERTR &

1.1.3 GNU 1%l

GNU 1R H H#F 3k 424 (the Free Software Foundation — FSF) /& i1 Richard M. Stallman -}~ 1984 £ —

T BETFR DL Unix. IFH2 B B3RP S8 8E R 4. GNU £%4. (GNU JZ2"GNU's Not
Unix" (B IA46 , ‘B RIR S8 "guh-NEW™) SR8 linux /5 41000 GNU #/E R G IEAERT 12 IR
HUARIX LS R G000 AR E Linux”, {FUZ ™A UE, BTN IZBEFR A GNU/Linux R4E.
B F 1Al 90 EARHT, GNU I H L4 T A& H VR 2 i 1) 4o 2 e, b A48 4 44 1) emacs 4’ 2248 bash
shell F£/7. gec RAGmFFEF gdb PIRFEFEEAE. XS AE R Linux #:4E RERIT R AIIE T —DETEN)
BT, A& Linux BERSHEA3ERE 2 —. LR T H A2 AR Linux #E R0 “GNU/Linux " #:E R4t
1.1.4 POSIX ¥rAE

POSIX(Portable Operating System Interface for Computing Systems) &t IEEE F1 ISO/IEC FF & ¥ — ks
o ZAMERFE T ILA T UNIX SEERFIZNG, 58 THEE RS IRS#0, TR IE Sl 1 5 AR 7
A AAEYEACHS — 2 _EAE 2P E R A LB MIEAT . 'BEJ2AE 1980 S H—AN UNIX H 7 4 (usr/group) (-1
TAERFEA EEUE . 2% UNIX F P 4150 B AT&T &% V 1 Berkeley CSRG) BSD &4t 1 i
B 22 (Al X AN G, AT 1984 £E 742 T Jusrigroup . 1985 4E, |EEE #1E RS AR Z
S N ZE T2 (TCOS-SS) JFAATE ANSI I SCHE T 5T IEEE FRifEZs 53 23 il A3 CHE P IR A s v i
PEERIE R GRS F AR dE. BT 1986 4F 4 H, 1EEE stillE b ik bR, 85— IE FRvE &7 1988
9 itk (IEEE 1003.1-1988), L LLG £ HH2 21 POSIX.1 Anifk.

1989 4F POSIX [#) TA/E#E 75 22 1ISONEC 1[4, JfH 15 TAEZ 4k e Bl 1SO FrifE. 1 1990 4,
POSIX.1 504 C B SRS, IEaHEMEX IEEE 1003.1-1990 ()& ANSI #r#E) Al ISO/IEC
9945-1:1990 it .

POSIX.1 AHHE T RGUIRS N TRE P 1 (APD), ANHESE 7 3EA I RSB S5 bnvte, DAL TS0 2
gt e Thne e HARUE . IXFE 1IEEE POSIX [TAEBLIFUR ETT T o 7€ 1990 4F, WIFF4A ANtk
RIZEHEAT, HIT 300 2 NS IR N — 4. BETH TG 45 T HAMEPOSIX.2). iR 7%
FRUE (POSIX.3). SEZif APl (POSIX.4) 48, % T 1990 4F FPAEC &4 25 Mtk T, 7 HH 16 T
EA 2L THER. SR, @ L ZUBAESIE R PIIARIE, 1 X/Open, AT&T, OSF 4%.

7 90 FFARH], POSIX Atk (I g 1AL AE $5 fo $ S g IR, a2 1991-1993 4F[A] . B 1E 72 Linux
NIMIES D (B, 3X AN UNIX AR Linux 32458 T HCH SEEME B, 745 Linux MRES(EARE 4R S Rt
TR, RS54 R2 4 UNIX RGEMHA . /EmIn Linux WAZASH(0.01 it 0.11 fR)HEC A Linux
5 POSIX FrtEIFEAMUT THES TAE. 46 0.01 I #/include/unistd.h S 48 LT LA R
POSXI A ESR I BT S, JEHAEER TS 3] “ok, XWFENDE, HIRIEAE FHFREmR”,

1991 £ 7 H 3 H7E comp.os.minix _- & Aii[f) post Lt O 423 T IEAEIR4E POSIX %8kl (C42R LIS
EAAELE Linux X488, 40 Linus R 7~ AR AT §E S FREAX ©, FREAX [R50 SURPRIER). PR
Y. AR IFE), HAiEdR TALIEAEAT Linux REEHITF A, FFHAE Linux] Ik 22088 2 25 Bl
POSIX (UNIX ¥ B Brpntt) B @ 1.

1.1.5 Linux #{ERGRIESE

1981 4F IBM /A m)HfE HH S 26 A BRI T 501 IBM PC. £ 1981-1991 4E i), MS-DOS #:/E R4 — H &
RTHENL EEAE RGN 5 S TR NS BAR B F R B, (RIS IR RS N 4
Apple 1] MACs 5/ R Ge] LA T RE S A (1), AHE LRI N B 2 581l

YIRS — AN AR PR & Unix 5 (B2 Unix 84 RGNS S a8 T . b T 35K
FAIE, Unix 85 RIS Ia S, PC /AN PR AABERELT & . W& — 252 2 Bell Labs [1/F 0] 1fij o]
DAYE R 240 FH T 24 1) UNIX JARRS — N O s BEATE AT XK1 PC A, A TIRR
TR RV 7 4R 2 B0 40 A T R A e B T B

IEAEUERS, HILT MINIX 845 RS9, JH0 — AR BARR e sE R EL. T AST MBS
AR TR, HEHAURARAE, JUT AT L2 i # G XA AR A E RS TAE 2
HA A HE Linux REERE1457 Linus Benedict Torvalds.

I (1991 %), Linus Benedict Torvalds & /K E Rz SALVRF Y R IO AR L, A%
hacker. 1XA~ 21 % [F155 22 4E 8 NS s T 5L, IR T ML BE S RIPR o (H B = (2 — ALk 2k
PIAE RS . MINIX BSRIREF, (HIUR— T80 B R E RS, AR — Ao I sE i E R
4,

#1991 4, GNU 1HRICETIF AR TIFL THEM. B2 Gnu C 4iikas & B, HIERE I

,67

1.1 Linux [FHEAERTR &

KBTI GNU BERSE. BIIZ MINIX WIFIEA T R, Fa 220 A RefG 250G . T GNU [#:/E
F4 HURD — EAETFRZ T, AHFFANRELE JLAE N S8 L

XIT Linus K3, CANREERT . M 1991 4 4 H e, fIFIREemRIFAE Tl 5 CIREAE RS Wi
Trah, AR H AR, HoEh T4 2] Intel 386 /&R A5 R B XIs 1777 T gt BeAR . (HJE2K Linux
(R FEEN SEA 0 THI

1991 4411, Linux JFR7E—13 386X AEAAL 2% 2] minix #/E R4 i 2% 2], Az H A BE 2 minix
REMIMAYERE, HFIFMRREARIT R —ASB Rdb #AE R 48, M4 Linus & comp.os.minix 7 [41 1 & AT ¥
K, FRATAT LGN M 3% 25 2 2] minix RERTT R A G Linux .

Linus %5 1 ¥XJ% comp.os.minix #&ef i BJE7E 1991 4 3 H 29 H. MIH & “gecc on minix-386 doesn’t
optimize” J& 4 % gec Hi 1A/ minix-386 FIisAT AL IS, itk nl A, Linus 75 1991 4F 4TI C & T 46
WAWIFT T minix 248, JHAEXBON A T ek minix 305 R0 AR, 17 HAERE—252%) minix &8,
oL AR A A A E T ANET Intel 80386 & R 45 MBI HEAE RS

AR R AT NFR H minix B —AN)@, i i 55— A 0h 2 “ P sz CS 7 (“RTFSC (Read the F**ing
Source Code :-)"). AN A E ZMACTRE T o X W B TXT2 3 RGP, RA T EE S RS
TAEREARRBE, T EA GRS, LK RE LIV BUOYER T e, Hhamg Tir2
B, TR) A B AR AT K Z I BAE S, (HEE AN RGO B GRr, ERRE S LR
PE,

M 1991) 4 A3 TT4R, Linus JLT-AE T 4 #RIN (AT 5T 386-minix % 4t(hack the kernel), Jf H2ilA
TR GNU %4 51i% 248 (GNU gee. bash. gdb 45). J£F 4 A 13 H¥E comp.os.minix & AiiE H O C
28 T LK bash BN T minix I, 1 HOSRABT . AREETFIEA shell #A4: T .

F—/N5 Linux 3 M EJE7E 1991 4F 7 H 3 HE comp.os.minix R AT (CYER I IS AAAAE Linux
XANHFR, 246 Linus (61 BLARG AT & FREAX ©, FREAX 35 SURPRIE) . B SRR TITE).
HA B FE T A IEAEHET Linux REMITTA, I HAE Linux 507k 2 AR 250805 POSIX (UNIX ()
FEPrbriE) BIFRAERET .

78 Linus [R — R AT B (1991 4E 8 A 25 H comp.os.minix), i [fT 45 minix] 73] i)“ What would
you like to see in minix?”(“ /R AESE minix T WEIHA? 7)), {EZHE A E ROE SR HIEE TR — S (e k
f1)386(486)15:AE 2 4t, Jf H U @R, A ASIRK, WA GNU RIBFEL L. TFk 52 iE
RGEXNEN 4 AT a1, A KRR B80T minix RE8H 5B LR AT AT 4 555
B BTSRRI e, BRI RGENITTAGE S minix AR% GF HATH T minix F3XF RS0, IF
H O & DiHH bash(1.08 ki) F gec(1.40 M) AEEN T8 &=4c b, i BAE LA kvl LS T .

B, Linus BT & FOERAE R G084 A —47 minix (OUEAES; 1w ELi T T 386 AT 45 U1 Huks
PE, PrUIXIEAE REAN R RAE R, FH RN AT W5, X1 Linux PR AEYE RS, Linus
YN IFEAFEE . A HET Linux JLT 0] LB ATEATAT— R ff i R 4544 L

P77 1991 £ 10 H 5 H, Linus 7£ comp.os.minix #8241 EEAHE, FEaRmANEAG Linux W% RS
[JEE (Free minix-like kernel sources for 386-AT). X Bt B i LAFK k Linux RS 5, I H—H) it
&, Rl 10 F 5 HX Linux ARk die— MR H 7, VP2 5K Linux R8T A & A #E £ 73X/~ H
T PTLA RedHat 23wl iE XA H -1 RATE HT RGWAZIRIRM

1.1.6 Linux #{ERFRARTIE

0.00 (1991.2-4) W ERE 5 27~ AAA BBB

0.01 (1991.9?)5 — /N IE M /N AAR I Linux PAZIRAS o

0.02 (1991.10.5)Z AR A LA & 0.03 RRJE N RA, HArc &Lk,
0.10 (1991.10) 11 Ted Ts’o KA Linux P AZRRA .

0.11 (1991.12.8) A T LLIE R IBAT M WAL IRAS (AP0 SRR IR A
0.12 (1992.1.15) = AR E A P Ak FRES IR AR ALY
0.95(0.13) (1992.3.8) FFUA A MEFU LA R G0 AR K N AZ A o

0.96 (1992.5.12) JF4fi I WY 28 SCREFH EAU ST R 48 VFS.

0.97 (1992.8.1)

0.98 (1992.9.29)

0.99 (1992.12.13)

1.0 (1994.3.14)

1.20 (1995.3.7)

1.1 Linux [FHEAERTR &

2.0 (1996.2.9)
2.20 (1999.1.26)
2.40 (2001.1.4)

FIIAE N 1k, RO
&L 1 FRFAZERBFHH

WAL RRAS 5 Al H AR B
2.4.20 2002.11.29 26,200,000
2.5.52 2002.12.16 30,000,000

¥ Linux 240 0.13 A% B HE00PK 0.95 Jiit, Linus [RCEE I RFEAE R 1.0 BOLRIELE . [FN,
M 0.95 LR, N RZ IR 22 et 2 Ab (R T RSP I3 A0 2 LA A =T, 1 Linus 185 BT HF 454
JSORT A% R 4 R e g Je 15 K RN TR o
1.1.7 Linux Z#REIRH

Linux #4E R GEWITTUE I 335 9285 4E Linux, Linus 4t iHER/E RS04 A FREAX, L4 U P
VER . PR, SRUORTTE R . BB 0 E R4 303 fip.funet.fi IRZS5#% LI, F7EEDY Ari Lemke 1R
ANFXIXAN A A BESR A Linus [ERE R G0 AL IE 2 Linux 7 512388 /E RS0 H &, T2 Linux
XA BRRLIT UG iAL T oK

7 Linus [4% (Just for Fun) — 51, Linus f#REt :

“H AU, FMREAA B ZH Linux XN SR RATIX N EAE RS, XN TFHERENT .
MM BB RATIRAE G AT A% FWE? Freaxo. SEBr b, PIRZACHS H S L FLH Y] Makefile - iR wifef
G PRARAL I S - U E B “Freax” XN T T, KAMAHE T FELA L. HILSTX W EAT 4
KR, LEUNIEATHTE NS, ROAIRIEBA AT N kAL A% AR . 7

“ifiy Ari Lemke, " EFELH 5 05 FOR AZARRE IR ftp b5 b, IF HAER AE Freax XAN4 .
b R FF L ILAEIX AN 4 5 (Linux), FRACA Y FRIFBRA IR 2 Pt . (XA R R4 5. FreAFRnT Lo
B IE R R IEAS A, B 2 (A B i BRI F B A 32 SCEAR . (HIRARGFIE, X 2N, T H
DU HIXFHR R VRN, S BRI X

—— Linus Torvalds {Just for fun) 2f 84-88 Wi,

1.1.8 BH#f Linux REFEHNEETIKE

M Linux [AUEARAS FRRT &, Linux RS E 2T R A GABR T Linus A LA, A ANz
— A& Theodore Ts'o (Ted Ts'0). fill 1990 4FXENEF MIT HHHAHURNE LML, £ R2EIA MBS In 24k v
BT PSRN 2B A . AR B EATE, MARIEA S hacking on Linux, o KAt IT4R 3 Yok Mk 400
LHidkizgl, HEMAE IBM TAE MR R G gnfs e S5 ik e EBRM it B4E 898 FIF
TR IETFE i

Linux 76 tH FEH A AT WA R R ThY . BAE Linux #7E RGN I, At Pag SR) R
M linux (R EFRAE T maillist, JLFJ27E Linux BITFAR R A (1991 “FEIT4R)HE—E 8 Linux M H stk N,
W B R) Linux PRZR IR A9 A (Linux 942 0.10 FiHFR RS SRS FE Y ramdisk.c AT 2% 9 753 o FE
J¥ kmalloc.c). E2|HAMRMNFE L Linux G0 T, i EILSEPN X 5 5807 T linux [ftp 3
& (tsx-11.mitedu), 17 A58 AT K linux FH P ERHEIRSS o Al0] linux £ H)8R K DTk — 23t JF s
BT ext2 KRG ARG TN linux TR Fse BRSO R G bR Sl XHEH T ext3 SUHER
gr, KKEEm T XM RGE R AT R . A0S, 25 97 1 (2002 4 5 H) ¥ linuxjournal
WTPRR A AR T B AN, AT TR V. HET, Al IBM linux BRSO TTAE, JENEHEA K
LSB(Linux Standard Base)%% 7 If () T-4% .

Linux #EXH)47 4 APt Alan Cox. Ath i TAF 0% [E] jgi /R - 30T HE 75K 2% (Swansea University
College). NITT4f i 2 Xk e LN %, JoHAE MUD (Multi-User Dungeon or Dimension, % F ' (2%
Do 7t 90 FEAR LI games.mud Fr EIZH 1) posts AR AT BAER Bt & K 1)K posts. 5 4 A S T
MUD (1) % J&& 52 (rec.games.mud i [# 41, 1992 423 9 H, Ahistory of MUD). 1T MUD %% 55 % 4% 55 47)
FHOG, M AT VT SATLIN 28 TFAR IR . D4 T Beilfe x4 e PRI A T AR PRI 5 DA R o) 468 A i ()l
T IFUR A & AR B A E RS, WAL R — MO E NG TR, BT Minix A8EA
A2, 4 Linux 0.11 I 386BSD A Afilhf, %8R AMF I T —5 386SX Hiflki. HiT 386BSD i &4’y ik

,87

1.2 WHEHE

A RE, 10 386SX RN, FTLMbZ2E T Linux R4, TREMIT IR 2754 9 2 AL Y Linux.
FRARXF Linux 7242 72688, JUILEA M 7 I SEH. £E5CT Linux (15 P A s ki i,
fbFEE BRI Linux SEEL I IS4 (beautifully) .

Linux 0.95 kAT Z 5, A T4 Linux R4 540 TR BEER) Gl ftuds BN T,
HRBA B Linus K48, A Linux £ TCP/IP MZEACHS i AT TN Z — o JaBHTINA Linux (T A ML,
HIFUE A 4ED Linux WAZIRARRS I E 2R ST N2 —, BT RLBEECR Linux 41 F W e Linus 2)5 d5 ok 522
AP, LLG Microsoft 2) 8 Zi8iE i B, (HAbEFiithdhids 7. A 2001 “EFFEAfh 571 53 4E 4 Linux Y
#% 2.4.x AR (Linus = 2240 7 T R8T TT R Wi N AZ ORIl (R ok, Eean 2.5.x i)

(AR T —BEI1E#E Michael K. Johnson /2 5z F-82 il Linux £:4F R4 A2 — (M 0.97).
A J& 2 44 Linux SCR% 8] (Linux Document Project - LDP) (&R #H 2 —. 244 Linux Journel T 1,
Pi#E RedHat A7) T A%

Linux REHARANA XL IR Jy St R B A RIZXMFETI, A VP2 EHLE T Linux figth
TR DR, XEMA——FI2 T . FEITEIRE M B AAL]2 W Linux A% CREDITS SCff, 3
o LRI HE T % Linux ACHH K STERIGIE 400 A R4 581, ALEABATTIY email Mokt F3E £ ik
B VY& € USRS

W R, FRATAT AR FAR Linux TR SZ RGN R

UNIX #:ERSE - UNIX - 1969 it E7E Bell 525045 . Linux Bt UNIX [F—F il R4 . UNIX 1)
FEEMERAHZU T .

MINIX #1ERS -- Minix #1ERGE L UNIX —MTaE RS, &1 1987 54 HNLE0%
Andrew S. Tanenbaum JF & 5. HT MINIX RGN H I B3 HEEARNS LR a2t TR 22 E A A
AR ZEFR TR T 24 3] UNIX REG0HEM . Linux RIJTFUGE S Minix 2481 1991 4E A4 TTURTT K -

GNU &i)-- JFKR Linux #:/E RS, L Linux bRt AR 2808 Rk B#RHE 1 GNU &I Linux 2
ER G — NN, BT GNU BAIAEE(LL Wil bash shell), WU Linux B~} 347

POSIX #3#fE - ZARELEHES) Linux #4E R LG A IE F R RS EEI/EH . J& Linux Ak
[RIAT B

INTERNET -- WIRHA Intenet (W, A EAGSIA M ICET FHZE R TCRZENR, A4 Linux &%
HBER ES 0.13(0.95) A I /K T

1.2 AB LR

AR SOKG EEN) Linux 15 1A AZ 0.11 Mot AT PG FS IR Ry RS« Linux-0.11 flRRAS & 7E 1991 4F 12 H 8 H
KA o AE R AT ARG LU 34

bootimage.Z - HAG S EBEA A (1) M 4 3 Bl G AT
rootimage.Z - L 1200kB Hs 4 IR S 2R Ge i A ST A5
linux-0.11.tar.Z- P AZYEARES S5

as86.tar.Z - linux bruce evans' — 3 HIFAT S0

A& 16 7 BV G R e R AR 5
INSTALL-0.11 - B3 i 228 Moo

HIATER 750Kk rootimage.Z SCAF, g PUAS SO REHR 2.

AR AT linux-0.11 WAL IBTAIACRSRE e, MR NIRE P SOPFAREEAT T PEAIARE, B fE
X Makefile SCHFRITERE . 20T IR 1 2ORALIRTH LR S Bt AT 10 o DRI M O3 BT BT AR AL 25 R A
RITAR A shell B2 1k HAR MU AR EL B S AT 704, SATIESTIE, IR DRSS B i
FEHEATI B AHAED BT I AL SR A T — 2L 0] 5L 431

PP BRI AE 70 W IR v SR 20 1 2) N A B B R A I, R A SR AR I PRl A 2t
FER AR Sk — B E) C B F WEKILA DI, Kot gnu C B 5 K WIRIL SR TE 5 HEATBON PRI 241 A58
FU0S Wz AR AT R A RN, RO Intel TS (8259A) AR AN U], A A

,97

1.2 WHEHE

(rr &ML XA B I ACRS I B, SCRESELF I T BT RREAF IO AE Rk, 138 A ik el
VA B LA — B A R AR I A B E R R R R 2

% Linux 0.11 fRAEZR “TT 717 &b THEFRATIH Linux BATHLEREE . Linux-0.11 FRIEAN %
PEARRS A 325K A AT, P dE i A REAR 4RSS Linux (ORSEE. 1m0 H AT ECHTY 2.5. XX IR A RZAE#
K, KA 188 Jb7T, BMEARAE— AL ik i i th R L RE ARG 52 o B VFAREE) « BEAR B N T,
A AT /N Linux 0.01 AR PIAZIEARASIE ? & A 240K 745 42477 E S JE R Rl 0.01 Fi) A %
RIGAT K Z AR Z AL, P2 BAT CLFR X AL IR SRR, AR AT AR M B0 P A #2514 FH DA &%
X RERE P IO UE . S ST R sh R P S5 AR 5 B AT AR —FF, 10 0.11 WK 515 8 shFE 7454
W5 AR I BEAR B —HE . b — NSRS nT LA R 0.11 R 1) 20 4 26 I 4F & 1) P9 A% A% S
(bootimage), W LAFHRHEAT 51 F k. W R P b 87 5 AR S RGeS S A (rootimage) , A4 e gl T A
BT IEH AT T .

% Linux 0.11 [AT WA AR 24k, iz WA A4 A OCERESE R A1 . TCP/IP 4%
S I — 2 2 AR s AR, HLFAE Linux S0 AL IEAR FJE AR, S AEHLHRCRAR
SEARE R, T DAZE TR T Linux TARRIFEA S 2 5 1 20 Hrix sef 0.

A6 Linux A% BT AR #IEAT T UERH . A T PRIFE A 538, SRR I UE B 2 DA A A Hp 8
ARAD I AL R SRR BEAT 11, AR L8 DAREANJEARIS (1) H S — TN AT 4. AR IERE P SO IR
JPal S ILETIH SRR 51 . A Linux WAZIEARIS 1) H SR 450 R P13 1.1 fioR. By B kgt se
LA linux 4 2455 H %

F|FF 1.1 Linux/BFE

kA K e B I(GMT) - B
[C] boot 1991-12-05 22:48:49
R 1991-12-08 14:08:27
Ii include/ 1991-09-22 19:58:04
@ init/ 1991-12-05 19:59:04
E} kernel/ 1991-12-08 14:08:00
E} lib/ 1991-12-08 14:10:00
Q] mmv 1991-12-08 14:08:21
_D tools/ 1991-12-04 13:11:56
Makefile 2887 bytes 1991-12-06 03:12:46

AFNRRAD A=Ay 1 HEARE 4 FoR A WG| R s 32 Aty sSUnHES T BL 11
N 2] WIEIOAT A28 NAZ A B REAT B 0. SR B 36 B SERI5E 10 TR WA 287y, L3 5
AT DU N B BeAS B o B R 5 R T o B8 10 RS 18 TR = N A, TR D 5
I AV TR e

5 2 WMEEEHAIR T Linux H/E RN RGN, PIARURARRS SO CE R 4 23 45 46 LA S RS SO K3
Difig. AT Linux ST AE A8 A 2 07 2 BA RO e A PRIk) A FH 23 e, DA AT 7E RedHat 9
BAE RS LI AR T TIHR I linux A%, XN RZARDE 75 ZUE S b 7 o 3525 THIRTERE WAL R AL Linux/
H 5% FHIFTE BRI —AN SO, BRI A RACHS () 5k Makefile SCEFIRIN 2o 123002 BT AL IRFE (10 4
PR PRGSO, flhen PR P AR make fEH .

5 3 TR VEANERE boot/ H sk N I =ANE Ay, Hrh s A 5] 3727 bootsect.s. FRHX BIOS 124
) setup.s Y- giFe /7 H1 32 fF7is4T I ZhACHLREFF head.s. X =AMCFLT 52 T W W% E5 Sk
AT, W RGFLE ST, SR THEN 32 My B Is AT 2 i irs T1E. W RGHE—%
IR TAEVE L T

,10,

1.2 WHEHE

5 4 B EEAY init/ H X W RS IYIHEARE main.c. ‘e WSS I E WL TAE 3N IEH
BATHIOCEEM T o TE58H T RAETAMAIGA ARG, B T T shell (ERE . 7o/ 4 fe e i 75 2 i
FHATRA SR, RIOGH 5 S5 (17 [52 T DA% RO LA I 547 .t A7 BRI (1) bR 4L
FENAZ R 2 A, DRI) N %R ST . U URBEE I EF 1 A main.c BT 0 1R BT R,
PRIGIZ N Linux WA TR TR, TS E LA TO, HREFHFEN RS RGH
M SRR AT R — D 1 52

% 5 TN kenell H X AT FET. o i BB 18 /S b A2 R B pR £ schedule(). sleep_on()
BRERI e RGP T IOREY o BRI 1% CL o Jorp () — S R BT 1 Mt

% 6 FX) kernel/dev_blk/H sk G & FEF AT TR . 13 BB AR, AL & 11
IKSRET, FES RGN EEE M XA AE . P, E R I 7 N I 75 8 e s — N R A=
o

55 7 4T kernel/dev_chr/ H s i A58 44 IR SRR P A TVE R UL o IX— B v SR A B HR AT 2R I 0K
RS, BRI P RS R AR KR, RS R 2 S SN A (R 5 2S5 — NG
Bl 1 4

55 8 TA 41 kernel/math/ H s A2 E DAL SR AR I 0 SUREY o T AT IR WAZRRAS, 8% ILIE
THEZ R BEES, IR N AR, IR E . HFa — B rn TR,

%9 EAHENZIEARND fs/ H PSRy, 5 IX T PN A @ SR BB 8 B 45F— i 2% i sk
Andrew S. Tanenbaum (1) (#/E RGBT 550 — A ¢ minix KRN FNT, BRI Linux 5
4t HUSCHE minix —FPSCHER S, Linux 0.11 Mgt A 4b

55 10 FEAA UL mm/ H S A BREY . ELEMIH PR AX T TR N 2%, T 25X Intel 80X86 fHAb FEAS
IR AR IS AT 77 20 S B, IR AR IS M R 7 58 8O 5e 38 14 % 80X86 Ry B isfT s
AU, XL EAAT L2 Intel 80386 Fi/F Di 4 T (Intel 80386 Programmer's Reference
Manual). {HEEMEE S, DAEARDD 12 B S R 6 G EA TR U8, W% mT DA SE S Hb B 2 1) T4 B B

AT I Linux A% 2 BT -1 B A0 = 06 A% SK ST i, BRI — MRk ik, FEDd i N AR 7
I 2l BF 2 [l o AST5 2R 11 FEXT include/ H sk (W TR Sk SCHEAT T 1 EGH UL, BEAC EXHRE—AN e .
BN R S MR EAT T RGN R . N T TR S A, AR sk e — 2]
B s S5 M R AZ BT T GRS, (HIX ey 3 SE PR FARREAEIX — TPk B, BARIZEN A E
SN e T R ES AR 1, AE AR BRI AZ PIS AT AL, 58R 75 B T fiftix LSk ek
IV 40 .

5512 T T Linux 0.11 AR AZIEARES lib/ H sk T SCfF . 1K S8 26 bR 5O 2 B) G 128 R G55 R
SRR T R AL, N LUEEM R RS BRI D T XA, B DUX H N A
RZ, WTDURIRHLE 58 XMW AAETRA TN 21E$E 0.1 JRIVRF 2 —.

55 13 T2 tools/ H 3 R build.c #2177 X AMEPH A S AUHEAE G 1R A 5 1F Y % UG (image) U,
AU TR W T R 5 | SR P ES Hoe E N BSOS — A 583 T W% HE (kernel image) LA

R AR SRR RG] M T Linux P — S5 30 ORIBEARSR g5 X, DLRRAF R
BATHLHI A 1] B

N TAETER, RSP R e T WA ZE R ¢ PC L S TR R . 7ES5% 3
MR, AV TP T A PR . SCRSE R, AR TSy H— KU %y
GALIISCERS) . LEnES | Linux SCR43 H LDP (Linux Document Project) H (K SCEERS, BT T4 Wi b
I AAATR S S)% HOWTO L&, 1A i LDP i) utibil 1 5.

Linus 7fEfBAIIT K Linux #E RGN, FESE T 3 A4, A& M. J. Bach 1] (UNIX #/ER
Gty CCERLD, & BHIR T UNIX REEV WAL TAE IR BRI 4544 . Linus fTH TR 2 %
5, Linux PAZIEAES IR 2 B2 s B0 A4 R H % . DRIk, ZEP AR BN, X2 — A AN n /b
() A% TAE TS PR 5 T 2 % B4 . 55— 2 John H. Crawford 254 2%)¢ Programming the 80386)(SC#k[21]),
SEYHE 80x86 T IRY LA AL LM+, A — A& Andrew S.Tanenbaum (1) (MINIX #:4FE R 48k
TS SEELY — 55 1 AR (SCHR[22D. Linus EAEH] 7 iZ A5 PR K MINIX SO 2S¢ 1.0 hiv, 1 HAE R
HI Linux W2 PAGSCRRZ U RSE, T DAFEBI A BA U RGN AR, SO RGN TAE R
J7 TR 5E 4] LU Tanenbaum ()4 41 3k 45

FERRE N REFPREA TR UL, BRATT i SE fT S DR P 1) R ST AN H K S AN 24 DL R S I E R Y

,11,

1.3 AHNGE

PIRFR, ARG A AR B e B ACRE HAE SL R ARSI AT VEAERE , TR 0SSR A RS B S A EAT A 7
IR s BR, KA C B F & —MoiBil s, FP T RA D E R SOERA RS . B EA SR
BETADAT TG B AEARDZ JE X3 B RN TR, XA R At SO0) — 4 35 sl s 2 T) AH
KARIAT U o W RAEE 58X L5 EUG [REL R W — AR 7, R A R — 204

X BRI AR S i 5 B) — B B ARE & TR I A G AT 0 &N S A Ry, IR R R TR
e AE R, T HAESS AV B T, b e LA S REAT IR T B

5 UL 2 YR O SE A HR R T A SCULE B — DI, HARERIRC LA — Linux T T,
PR FUZRRIRIES b Linux (AEE, HA T — &M —4 Linux GURU IR AR . IX IR 1% 2% B 3 £
PIVRARRS, S Af AP e N 1.0 MO T 4R . 258 I IEAE TT R P 3 50 5 I RRCAS o ARSI A I
BRI Linux WE%E 2544 fR. URBEDLE B AARX L8 T A& b I B A L 2 fed th B SR st U Ah 1
(patch) F&J7Hf, FMLHFF TR T O.

1.3 KE /L

TSEMAR T Linux A4 R JEAS AT B i TN SZAE . UNIX S 9] B TR A RS R AS A Linux $243E T 52
P FEA S FERISTY) . Rechard Stallman 1) GNU HXI0 Linux RGH4E T & H AR SFEHE T A
POSIX Fr#fEMI LA Linux $& 4t T SEI S PR ER A RE NS H 1R AS.T I MINIX #:4E RSN Linux [
AR T AT ZE 532 . Internet 4 Linux B HDH K LIRSS, I A SEMEA T B AN 2.

IR Ja BRI R T pR !

,12,

2.1 Linux WAZIER,

FH2F linux NIZIEREH

AT PSRN T R Linux ARZI SRR R G, SRJETEAIREIR T linux Y RZIEARAS H 5%
TALUBEA LT H g &AM SO D e LA T Z RS R o TR BRI IR,
PIAZIESCE linux/ H 5% R B3 —AN S0 Makefile TR4G, 6 — AT AT PELIE R B

A EEARAER G 4 WA B BRGNS R GRS A N R
W 2.1 fiise FLP NIRRT 2 FR A Ee A B S 7 . Internet X 28R /7 M 7 AT 40 ol 04 45 ot . FH AR5
BAE R GRS RE S 4R AL 1) HL P DR S IR I 25 R 11 BRAE R SRR 2 THREROREF? . £E Linux #:4ER 4T
by XSRS EAE X B RSES shell i AR R 58 UL WIZ iR #E A5 RO #B-E RGN
R PTG A7y, 8 B XA DU A Sl S A0 U5 1 1L o

VAV ERE
BAERG RS
BAE RGN

fgfE &R 5

E2. 1 #MERFHMERS -

Linux WAZI EE@E0E h 7 S5 SENUEAFREATAC ., SCBURHREAE SF (R P BRI L A, IR
FEXMEAE BRI TT IR, IF v AL A RE S i AN G PAT PR A) U 1
FEARTENZR A, BATEEHT Linux 0.11 FRITARZIEAC, R WIHUEA Linux ARZIKSEA A R g0k, 282
RS o SR JERHIEACRS b Y BL LA B M AT Ui W o dR i Fid T Linux 0.11 P A% G 5256
MBI 5%

2.1 Linux A& ER

HAT, $54F 2 90 A% 1 2 RS 32 B mT 0 by 8 A s A A A = ORT 2 K A A AR g A 15 i
FEP) Linux 0.11 A%, TSR T S A2 e B AR S 1) 2 A s P AZARAD 45 F 55 2% . BAT IR,
ANJEZ A B IR G PEAN

R NAZB I RG T, BAE RGIHAUIRS AN . N FERE AR 5 @ S EEBAT R G000
f84 (int x80), 1 CPU M "4 (User Mode) DI#I#Z.0:7 (Kernel Model), 4R JEH1E R GUiRHE BRI
SR F RS 32 (0 R GE R FH RS REY, I e R 25 it 1 DU 3 75 2 1 JEC 2 10— S R B A 5 ey o (1 3
e 7RSI T N R TSR I IRSS G, HAE RGOS DI 7 25, IR R30S R b 4R 2L 34T
SR 4. DIEMEZE IR, B R A) P AZ R S A S = AN 2 T IRG B2 $UTR
GRS ZR S R RS INIRZ R, WK 2.2 Firs,

,13,

2.2 Linux W RGK R L5

E2.2 BRZEN R EREMIEE

2.2 Linux RZRGFIRREH

Linux WIZ3 21 5 MR, e hld: EREHEERIb, WAFE BB, SO R e, iR
[0L A AT ERORIT o 23 6 T A

HERE P BERLBHR D D HIREREXT CPU SRR o DR IBU) U 3 SHemet A 2 RERERS 24 1 B U
5] CPU, [R]IN LRALE A A% BE S N AT B . AP AE BB R T ORI AT HERE RERS 22 A L =L 12
FEDC, R, A BB OA SR RE A A B 5, A4S Linux SZRFEREAE T LESEBr N 4725 8] BE 2 KK
AR . IF T DURI I SO SR e AN (0 3 A7 2 SR s s e RIS A it B o 25, il ZEm AT ik
[FIoK e SCAF ARG TSR AN B A SR BRI o KU SCAT AR UM IE 1 170 T AT (R AR A7 A B o 4
P AT SCAHZ I, B AP ORI 407 TSR0 SO B s AR R gelie A i 2 Ao
ARG e MERERLE SR T RG] T SCHF 2 Radb R () (15 B AS T 30 W42 VBRSNS 2 ol o 2%
A ARUE R T 1) FFSCRFVF 2 R AR

UM RSO R WA 2.3 s Herp RIELAREN T2 MR, MR e SEAE 70 K
7i Linux 0.11 A RSB A Linux 0.95 WA TT 461820 SRR U SCAE R GE s 1M I 2642 1R SCHF 1) 0.96
FRAAT)

WAFEHL |e-.

BERE AL ﬁﬁ@ﬁ%.

E2.3 Linux AZARFRREM BB ELIRBXR
HIB T LA P AR AT L R T AR A AEHOBOC 3R o DR e AT T M S A R SR ok
e CEE) BOEPatrenIetfe. W, — PRI SAESAE RN, e e e 4 v
GREEIEAT. B, AR E Bl RS B AL LR, B IK R el AT RELE R Sh AR e Y1)

,14,

2.3 Linux P RZREFEEE

Rz ERE B ARG, ARSI B 1R W e PR A i b RE R AR 212 1T, T 3 MRt it ih
T2 S DR v 5 32 T R RATAE RO R

Fe UMK R LA K] 2, (ARIFEAR 2. SRR AR T R B0 A A7 B AR T y
SEBEREPT A OB P A7 22) o BERRIR)IELAR 5 AR G i B 5 AP B R SR = Al AR LA X Ff
AT B SCVF A BERE VT 7] A0 [— A X AEA T BERE RIS B A # . BRSO R Geth o] I -4 1
KSCFFEE AR GE (NFS), [AFEREAE] A A4 B 1 RGURSIE A IE R (ramdisk) B4 o 1 AAF
BT ARG SO RGOSR WA B DR S A

NN GRR HR, BATE T LAY linux 0.1 P RZJEARHS IR 45 R Re P % - SR i i
K 2.4 PiosRIHE B 458 o

M4

W
RGO .

DO RRLER
SR ':::::::::::::::
TRA TR

FRA 1 B
TR 1 it P

B WKLY

{0 O G Wz

E2. 4 NREHIHERE

HA WG LA TIHE, B TREPHR S HECLAN, R HES 0T I A A A R 1) H S 412145
o

B TR LR Ee gy IR R LLAN, AT IX BTG 2o MO A R T T B X LB BE A4
WAL 1 AR GRS) LA 2 BCATA] ol B T BV 57 B B A R R B A S — S R ST IR PR

2.3 Linux Rtz Hl

FEFp 2 — Nl AT S, kR (process) & — AN HATH IR SEH] . £E Linux #:4E R4 L [R]a]
PIHAT Z A HERE . 0T linux 0.11 WZSKE, Rz v 64 NMREFINAAAE . RGPR T — MR “F
TN LA, R IS SRR RS fork G BT HERE , B G I aE REAR O 1~ HEFE Cchild process),
B, WRRAACHERE (parent process). WAZFEPAEHEEFE RIS (process ID, pid) SKAriREEAHEFRE,
R AT HAT IIFE AR B FIHERR X 2 o BERE A (AR AN ELE 35850 43 E R — AN AT SCAE A (AR
Bt BB, AR L REHAT B AR RIS 1) SRR SRR IX o BERE 2 TRIAH B TR) T8 A 75 28
ARG THMT. ST HRAE A CPU MRS, R —WZIRGH N IEEET. WAZE R
J7 53 B B A5 AN EREE AT

,15,

2.4 Linux WAZXAAE R Tk

Linux 24, —DNEFEaT AIE %A (kernel mode) EH /24 Cuser mode) F#4T, P, linux B
FASAH P2 TF . P AR TREREE R P PR R U S50 R AR s 5 . WAk
M A N AL AT R B0 TR R

PIAZFE 7 el L B R R AT B, RN EREE IR R N T, 1E linux &G, HERER
T —A task 4544

M ANEFREEPATE, CPU T & A7 as H A . BEREIPRZS DL AHERR I R iz R R
Lo MWL TFEDIM (switch) 55— NIRRT, B TR YT R AIRES, R RIMRAE ST s
M R3C, DMEAE TR PATZIERERS, GEAE R BV PR SPAT N 20 AERAERWIN, WA
Wt FER) B R S, ENAZAS T AT IBTIRSSIRE . (BRI 2 OR S T 5 A B A e s, DU b T IR 25 45
I REMI ST rh TR (4T

— NIRRT dHARIRPIRE T, FOERDIRES . W R EFTR.

HPigAras
running

WIZIE1T % FRGEIH T

running -« _

T, R [l

AR BT RROR A

interruptible

LR

zombie

1 IRRAS
stopped

ANTT AT R 2

uninterruptible

running

E2. 5 BRRIRESRIERIR

MBEREIELERE CPU HUATI, SR A THATIRA Crunning). 4B R IEAE S5 45 2R 48 b (1) DUt i Ak 145
FRIRASIE, ARILAL T IEIRAE AR AE linux RETH, 320 4 aT R I AIAS] FR IR I S AP IR S . MRS
RO I, AR AR B ARG, 2RGSO, St o ibiatr, (HIHARE
FEIE AT W R FORAS I, WRRKIZEREAL TESOIRGS . Rt bn), PRI T3 IR .

SATHBEREIN “ NIt Fers 2l “IRMCIRE” I, WA ST R BaR it . fENRE NistT
R RER L E HEREHE A, 1 H— N EREA RS) — DN REREIPIRZS . Ty 17 S i RE D) B 3 il A A% 4
PEAE IR, WAZAEDAT I A XA IR S 28 1B DD P T

2.4 Linux A& NEBERAE

£ linux 0.11 WAZH,) TAT RO T R SR BN, A 70 B LA DI REX 8, LR 2.6 s

,16,

2.4 Linux WA A7 5Tk

AR B FHGE X e FEHAEX
— "~ — = ~

(<

&,

‘B A7 BIOS ROM

E2. 6 3R PTFE R RITHRES To Bl

b, linux WAZRE I TP e B N A (P T A0 53 4 1 R T Al 28 B4 B A5 B o550 FH 1) v T
PRy o AR T B R R & TR I, RS TR A B S g X s o B
Rk s LA, R R SR B) s g v X, AR R R S IR R S Bk b SRy
SEPE AR o] LABE S FSE AL 6 A e PRSP AEAE A 2 A I, B RIS S 1) A Y
A PR i, eI G TR . YT RAM BRI RS, TN F X L2 2:—
oy, Fe BRI A B .

T THEALR G T T & S bR B N AE R 2 BRI . O T REA Al X Se 3 N A7, Linux K
FHT Intel CPU [N A7E5> TR FEMLH, A RE 0Lk P st bk 5 SRR PR N A7 ik i 55 1) 7 v2ai b B) I A T
FIRE P IL RAE G BRI AT A3 DU BE A6 A JRUBE R K 484 2 A X IR 43 1 4096 775 — T A
LTI FEF HE S AR, it LN A7 DR 547 BE T 20 I

FEAE X R A7 5 DU BTV, AT IR (145D AT DU L SERR 9 A7 258 5 K19 2 IR 2k i
Hihk=F). X1 Intel 80386 R4, H CPU nJ LR HEZ 1A 4G L EHIbEZE). X1 linux 0.11 W%, R4
VB A R TR GDT v () BeHiaR Fr i ko 256, o 2 TR PR . 2 T R4 4d L RRAN R A FH P 33
Rk, B RG] LU 2 28 40(256-4)/2 + 1=127 AMF5%, I HERIHEEHE L ((256-4)/2)* 64MB)25+
8G.1H 0.11 A% H N 158 Sk KAT-25 %0 NR_TASKS = 64 >, £ BEFE FEL b (Bk Ml) Y5 L2 64M,
I HLASASHERR 1 R 30U 11k S 05 457 S (1T 555~ 1) *64MB o R H JIT 48 FH 11 R 40 i 11 25 17 5 2 64MB*64 =4G,
WK 2.7 Przr. 4G 1EEFE CPU (126 btk = 8] ¥ [sy BEH bk (R) S FEAH), DRTHEAE 0.11 P R% BRI
GG — P b

R (F£55) 0 HERE 1 HEFE 2

Ve ~

o

0 64M 128M 192 wamas 4G

- SHHERRIX

- AT - e

E2.7 linux 0. 11 ERlMut= @ ERTREE
linux 0.11 77, EREATHbREMET T, FRATFEME 3 Bk 2 (A8 #e. a. SRR bR, & MRS

Holik 0 FFiGt, ok 64M; b, CPU [k kbl =5 8] (0--4G) 5 c. SEZFR#FE N fE k.
TEFE A R 40 i 55 8 0 S i R B R IR R AR ol CPU AN Mt k2 B) b g i, AR5 A

,17,

2.5 Linux PAZIEACHDN H sk 45H

TUH AR PDT (40D MR PT (Z000ER) WU RISe b B 5T b DR R AR AN RE TRV -
N TAEFHSERR A AT, B ERE A S MR HEIE G 0 N A7 DR S AR BB 21 3 A7 DR AN [F] N A7
U E o PR IERE 5 KT F IR B AL A2 25 ()2 64MB . EANBERR (K2 SR M b i 0 FAT45-5*64M, BT
et g2t AT AEVERE, JA TIE HRE HERE P Rt it g o R O Ze kit
A RN TUEPERIPRANE R, 12 LA 10 SITARA 0 A S, B0 IRk .

2.5 Linux A#%iRA A B R4

HI Linux WAZZ — Bl R R g8, DI, WA BT IORE) L3 R IR, ez
AT I O R AR H U)o T LAAE B 35— MR SCPEINARAE R 2 S P SL e A ORI SO o DRI i 224
THATE L NAZ AR 2 1/, SE R — PR SO H S aif A e

XIIATE YA Linux WAZ SRS H ok, ORI Ha. RGZE A& H i
SR E IR, AR WAL RS) 2R U REAE BA T S rh e S — A K HESE, DUE T T
—E IR AU B 3 T AR

AT tar 2K linux-0.11.tar.gz FETTIN, PARZIEACHS SCAFGOR R T linux H b FLrp i H Sl
(APSE

linux

— boot RAE 5 I ey

— fs ARG

F— include SK3CAE(*.h)

| —asm 5 CPU 14 & 45 #AH G IR 7

| — linux Linux P9#% % I #84%

| L—sys RGH AR 5Ky

F— init NI 7

F— kernel WAZHERERE . 55408, KRG A%RF
| —blk_drv Pkt & a7

| —chr_drv TR A RN

| L— math HeE P B TUAN PR

— lib AR

F— mm WA R

L— tools A B Image SCHF TR FR 7

[E2. 8 Linux M#ZiRXHE B R

WA IEARRS H S & 14 ST H, BILERE 102 MRUE . R IHE S L7 H g
I AT R
2.5.1 A#%=E B3E linux

linux H3&AEARIM = HM, it PR TaEEN 14 A7 HEUA, EFaME—m—14
makefile U, 1% 30 Sn R GBI T 2L make B9ZH000 S SCF. make AR A 32 gl k1))
WL s DA e O, AT E B e E— AN 2 NIRRT SRR 5 40 rh W A8 S 55 0 E T
o [k, make T HARAFEFEFIUH 1 B AT
linux H & T #IXAS makefile XA REH A TG+ H 3 h A 5 1 makefile SCPF, 3XFE, 4 linux H 3%

R T HSE FRATT SO s oL v, make #aswf HET BB k. I T BN WA BT A 1

WA SO, BT linux H 3 F1847—IK make 2K A4HRPTT,
2.5.2 51%/Ez1ERF B3 boot

boot HgkH &4 3 ML gmids 5 3, A& WAZIEARDD ST S e e g B AR 77 X 3 AR P S8 il I = 22
DIREAE ST HUN B I 51 N30, BRI g B N A, JR—2edt N 32 AR a7 oy r i
RGEVIAH T AE . Hor bootsect.s 1 setup.s F& /7 i ZA1H as86 Ak, 1 /2 as86 I3l 4ifs &5 #% 2

,18,

2.5 Linux PAZIEACHDN H sk 45H

CHBR IR, 17 head.s 75 ZH GNU as K4uiF, T KE AT&T # X E0iE S o XIS iE =
AR R L DL R ARG A 2R I T TR B A A TR B A2
bootsect.s FE /- /& WAL S | FERFE?, it G SRS — X (SISHX, 0fE R,
0 fiisk, 5 1 ABIX). 7E PC HLIIH ROM BIOS EH)G, Ktk BIOS iz 2 i 47 0x7C00 4bHEA T 4T .
setup.s /7 EEH it Las I F AL B S50 0 U AZ S system B2 5)) 2138 4 1K N AP B Ak
head.s)72 1 g I B AE system BEER K I A 43, 5 BEEATREF 15 46 R DN A2 0 PN A7 5 B LTI 1)
WGV TAE .
253 XHEZKBR s
e RGSEMBE P H %, HAE 17 A CIBEGRY . RUERFZ MM HXRAE 2.9 Fis
B AR AR — AN S, BB FHSEARTL S I R RBUE . o & SO 3ms 22 7)5 %c, BHET 2
REFSCEAB T CF RS, ik ML R R IHRR, LA RAHETIHXR.

- —

\

il_rw_block !

E2.9 fs B RHPZEFPRYEZESIAXLR.

AT LA, 1% B s R T AR e UAN R 2 i g ph X B 02 SO A . SO v
) RSCA 2 2 BB AEXEAS H SR SCREE TR UL IS, BT THKE 20 X DU AN 35 43 K A i

WF SRS, FRATAT LUK &R B A7 S R v DX I8 R385y . a0 SO R Bl v ial, - #8
T B S B R R L X o AN H S R RS B SR PP X R 2R P R) A A O RN B 2% b
(SO RS PR g P IX (R 42 buffer.c, 17 0 E R e I - 24 & F T S0 R B

7t file_table.c SCAE, HAME X T — N3 (BB FF) 25/ %4l . ioctl.c SCAF¥ 51
kernel/chr_dev/tty.c HIFRREL, SEILFFF R4 jo #HIThAE. exec.c P27 EEALT —MNHATFETF R EL
do_execve(), BT exec()RREUE I EE R E. fontl.c R TSSO ifo FE5HI0 R G FH RS
read_write.c F2£/7H T SEI AR S FUEN, ARG H 4. stat.c F2/PH sl TN RBCCHRRE I &
SR %L, open.c 7 E BALE SEHUE SOCPF B PERIBIEE 5 ¢ ISR R G FH e 4R

char_dev.c F- %40 FAFR AT S AL rw_char(). pipe.c)74 & 8 S sk BN B 8L A T () R 46
WH . file_dev.c PP A& ST i 17 SUREGIRFF S5 0 SCAHEES B2 namei.c B2)7 B HE SO R G H
S 44 FSCAE 44 (R B B BOR 2R 450 H R K. block_dev.c P40 & H B 00 S pR 4. inode.c 0 54T
XSRS | 1 RURAER R EL . truncate.c B2 T AEMIBR SO REIBOCAR BT v FH v 2% 25 25 1)« bitmap.c

,19,

2.5 Linux WAZIEACIG) H 451

PR AR SO R G i T AL SRR BT I . super.c B2 2 P05 X SOPF R SRR bk) A bR 2
buffer.c)7 1= H T3 WAZ SR 2P X HEATAC B . JRAE 1 1_rw_block /&E & & IM)RJZ 8, ©IFA
fE fs Hr, 1M kernel/blk_dev/ll_rw_block.c HFE ¥ &t B UK i 8. X L S RA S 2 A
B, RGN TH SR, #F R m g X Sk & I IKEI R (Lrw_block()) >k
BAEKRIAT, M RAERETFEEAR G A 5P & IR AR P A2 IE .

LEXTFE P AT AR L R R, BT T S A H X e S p A T e B TR R Z IO R o
2.5.4 K HEBF include

S H s B 32 AN h Sk, P EHSZTIE 134, asm FHEHE 44, linux FHEHH
10 4, sys FHAH 5 A XEeSL e 4E4 B DhaEILan ik, BARPIE A BT A& s Bl 2 WXtk
SRR

<a.out.h> a.out Sk3fE, X T aout AT ICAERE AT,

<const.h> AT S0, HArE SCT i 1 s i_mode B SRR AL

<ctype.h> TR Ao 58 T — 2o Ag SR W R 4 1 %% o

<errno.h> B Sk B R AR A S . (Linus A minix F15] 12 1),

<fentl.h> SO IR AT o T SO R IR AT B4 42 1 T = ()0 X

<signal.h> Fokactt. € MESHTEE, 595480 AE SR EUR A,

<stdarg.h> PESHCK . DG e AR RS HA R . FEU T (va_list) A=
% (va_start, va_arg 1 va_end), HI-T vsprintf. vprintf. vfprintf Bi%L,

<stddef.h> Bt s SCE . € X T NULL, offsetof(TYPE, MEMBER).

<string.h> TR IS BB LT — 2 P B A R N R 2

<termios.h> 2 iy N HH BRBCK SC A R SO S A R 2

<time.h> I TS S o . P e SCT tm 45 R RN — S8 SR a] R B B E

<unistd.h> Linux ARk SO, @ T & MAF 5 AR AL, JEH T &M . e T
__LIBRARY__, WBADHE 2 Ge i -5 R0 I 2 _syscall0() 2

<utime.h> FH PR SK SO o o T U I AME O TR) 2544 LL 22 utime() B 2R

2.5.4.1 R RLEWHERKIXHFBR include/asm
XS A 2w T 28l CPU A R A M B UIAH G B 4540 . F R R it 3% 4 A3t

<asm/io.h> 10 Sk3CF. PAZE R NI A) 1 2 e SO0 o dify AR IR R 4L

<asm/memory.h> WAEHE DS SO, S memepy () ik A I G % BR AR

<asm/segment.h> BrfRAESL SO 08 T A RBE A AT A B B N S G pREL

<asm/system.h> RGEKICMF. 8 ST BEE BUE ORISR RN I S

2.5.4.2 Linux A% ERJXHEFBFE include/linux

<linux/config.n> WAZECE L SCAF. e SCEERLTE 5 FAE A2 (HD_TYPE) WL,

<linux/fdreg.h> FRIRLSCAFE . A AP TS S 200 — 2858

<linux/fs.h> ARG 5 LIRS K (file,buffer_head,m_inode 5.

<linux/ndreg.h> fHE S HCLSCMF . a2 LU BB 35 A7 g 1, RS, X REE R

<linux/head.h> head 33T, & T BB ATl s gy, AL G REAT i & .

<linux/kernel.h> W% 30 &AL AL F R RO 38 Lo

<linux/mm.h> WARE BSL SO o A DL IR /N SOFI— 26 5 1R TR 25 2

<linux/sched.h> AFEFE L0, & X TS5 task_struct. HI4A1E55 O %L,
A L AR S B0 E AR 1N I G R £ 22 1)

<linux/sys.h> RGEHL M. SH 72 MRSV C RBUL IR T, Lh'sys_' T3k

<linux/tty.h> tty SkKSCfF, @ LT K tty o, BTG TIHINS L WAL

2.5.4.3 R EREBTELEMFB R include/sys

<sys/stat.h> SCARARZS KA B A S BRI RGUIRS 4514 stat{ A & .

<sysftimes.h> & ST REFEHISAT I A 2544 tms DA% times() B2 2R

<sysftypes.h> I, LT HAM RS H IR,

<sys/utsname.h> ARG FRGE ML SCAE

<sys/wait.h> AP AL SO 2 X RGEHA wait()#% waitpid() A AH < H BT 5 .

,20,

2.5 Linux PAZIEACHDN H sk 45H

2.5.5 B#Z#IaLIERF X init

% H e U &S mainc. T HUT WZITE ORIIEAL TAE, SRISR B o R G g Bt Fe,
AR BB & FIEAT shell ¥

R B SRR LS P17 1) 22 R B IX A7 AR ATV, TSRS B T A RO, WE I
WA ST e B R4 . 2 S AT A R Ra A0 A, (35 A TN AMT% (task 00, FFik
BT VbR AT LD S BRI P2, R IO QAR R 5 fork(), AUEEH—A
FIFAEAT initQHOHERE, /0% TR, RACKIHTHOR G R R, IF HAEE A TR RIEAT shell
B
2.5.6 N##2F £ B % kernel

linux/kernel Hx 48 12 AMRAYSCHERT—A> Makefile X, BAMEE 3 AT HS. X/
ARSI OC R R Ay, BRI A TEN F1) 2 SO 2 I 5 SRR K, B8R LU T KME 4025,

WL 2.10 o

A WpF TR RS IMARET
schedule. ¢ =
nktime asm. s system _call. s S
panic. c
pintk, vsprintf traps. ¢ fork. ¢, sys. ¢, exit. ¢, signal. c

E2.10 EXHHIERBRRXER

asm.s P27t A BE R Gt 585 I o |G (r) R T, 0 S8R e) S o A B P IR AE traps.c SCA
W, FESASTW AR EE SRR, R traps.c AR C B AR EE AL

exit.c FE/p FEAFEH TAABR L R G . WERRE. S (R4 ZORRFRE IR
Ab PR R DA R AERERE . 2 b b Re . HORERR A R R4

fork.c #2) 745 i T sys_fork() R G A A T AN C 15 75 BRi%k: find_empty_process() il copy_process().

mktime.c R0 & —AS A% AL R I 1) 5 % mktime(), FIF 350N 1970 45 1 A 1 H 0 RHEFITFHLY
HIGFH, AEATFHIRP I] ANAE init/main.c Hgi iR —X.

panic. /74 — AN o WAZ S B IFEHLIY R 2L panic().

printk.c PP S — A AL HIE B Wos e printk().

sched.c P& AL 4% A S 1 B2 R A o5 2 (sleep_on. wakeup- schedule %) LL Az — S {77 5 (1) 2 G0 18 FH R 0
FIANEA LA 58 A OGP A iR 4

signal.c FEJPH s A MG AR 4 ARG LLA AN A0 B IR o I A R Py vh Ab AT 5 (1) oR)
4 do_signal().

sys.c FRPAFERIRZ R kgL, b A LIe A 5.

system_call.s F2/ 752 T linux RZ0IHA (int 0x80) (K482 AL BRERE, Sehp b P R A0 S E & &R
Go AN C V5 55 A B R K, X Se B pR A4 A ZE AN linux N AZARES

vsprintf.c R SEHL T ILAE C 28 A NFRIUEZE R b 047 SRk AL R 2
2.5.6.1 RiGFRHNFEFFF B X kernel/blk_dev

EHEOT, MRl SO RGBS 1, RIS IR R 8 SO R e sSE L T 0. 18
PRI, IR A R, A T BB R AT e et I, AR P HERE S Bk £ 2 T
T RS LA AEVT A BRI, R E S DR P e e A I S B
ZerpIXHr, ARG TFHEHESS P o blk_dev 1 HR LA 4 A ¢ SCHRAT L ANSKSCfE. Skt blkh BT @&k
HEEFERM, Bl C SUFRE . XA R REECR, WK 2.11 i,

,21,

2.5 Linux PAZIEACHDN H sk 45H

blk. h i 11 rw blk.c

hd. c

E2.11 blk dev BFEHXHHERXRKER.

blk.h /152 LT 34N C F2)3 i L IR BR v 2% 45 R R B =Rk S5 440 o hdl.c P 3 2 S UGt A 25 et
ITEE HEJZ KB ek %, F22& do_hd__request() i %L; floppy.c F27Hh S ZESIL T R4S Hs P 1) 152/ 5 BK
KA, FEE do_fd_request()pi%l. 11_rw_blk.c "R TR EH B 24 Hdi 525 sR %k 11_rw_block(),
P AZ A L R Al i i R O B S AT B S A . KR B R B VT 22 U R Bk £ B
(M7 B, DU R gz i X b3S A fs/buffer.c .
2.5.6.2 FHX &R NIEFFH X kernel/chr_dev

FRFRAATRT T HRILEH 4 CHBETTA 2 MCGFR 7 SO X LSO S T R ER AT 3 11 rs-232.
HAT & BRI L A IR B . R (] 2.12) IR SR 2 [l KRB0 2 S R

tty ioctl.c '
serial.c ' rs_io.s ' console. ¢ ' keyboard. S '

E2.12 ZFFHREREFZENERREE.

tty_io.c FEFP A tty AT LAY ty_read()ANE BRAL tty_write(), ASCIFRGeRAE T LR VS Al #E
o BAMNSAFEEBRAT R AL R C BEL do_tty interrupt(), %R A0 S AE IR0 B2 7 4F
A ER R H

console.c S EAL &l & WU FR P A & 5 R 4L con_write(), HT-# tty W& . a5
Xf o g AR T I A6 L B E R con_init().

rs_i0.s VI ZwFE - FH TS B P A H3A T % 10 B4 b W A R e o 1% T A BERE P 2 MR i A BRI b R 2 A7 2% i
1 0x3fa 2t Ox2fa) XTSI 4 Firb WS84 2y AT AR 8], FF A8 AL # rb W 28 04 8 352 7 47 B AR AL 3
do_tty interrupt().

serial.c I T 00 520 FRATIEAS 5l UART AT WG AL ERAE, FFCE AR o A R i) & R 4hia e
¥ tty FH14F B OV) rs_write() BB 2

tty ioctl.c B/l T tty (1) io #2422 1 pREY tty _ioctl() LA KT termio(s) &3 io G5 ML S Rk, T4
LSRG sys_ioctl()f fsfioctl.c F2 2l i -

keyboard.S 27 3 ELSCHL T B W AL BRI keyboard_interrupt.
2.5.6.3 b 217 EFN#R{ERE FF B 3R kernel/math

ZT Ha HEMA —A C F2)F math_emulate.c. H:711#) math_emulate() b8 20& 1 7 int7 [7 Ab 22
FEF R C BB UM TP BT BEA AR FERE, 10 CPU HI X BAT T WMEBERR I FR &I, st &5 k&
Wro DEIE, A4 2 WTat nT AR AR AT UM BESS TR BhRE o AT BT ise 1K) N AZ IOAS I e 0 B Kbl ae
PRSI0 AT o AR P FURATEN— 4 HAE B, IR H PP RIE— MM BEES HE4E 5 SIGFPE.
2.5.7 AR B =% lib

WARZPE R T P g AR, RgniF R hruE PR D s sy — . Hop g 124 ciE S e,
BT —A~H tytso 4aifil) malloc.c F2/F K LAAR, e MFRFREL, A 1RAE— 4705,

,22,

2.6 WAL RRIFIICR

IR B R IR R exit(). PSR AL close(fd)s SISO IR T R AL dup()s SCAFFT ITRR
% open()- 5 SCA R ET write() $AT R BRI EL execve()s A7 L BRI malloc()« 2545 T 3ERRIR A BT wait().
IS8 RG] setsid() LAAE include/string.h H SZELIRITAT 74 B A R 5
258 HEEEEFHERE mm

% H S AHE 2 MG SCPE . BB A BR P BN AR D A, SEBL T BERE I8 AR Mol 21 28 1 Motk DA
S 2P hE B 3 N AF X P A) A7 ok S, TR AR T R, AEERE I R R A T T AT
DX IR BE A7 L2 TN T 6 N R R

page.s SCEFELRE A AF BRI R b Cint 14) ACFERER, = T ACBRRR 7 i -8k v v 5 [A0 o S5 v
WU) Akl 5 R TR

memory.c F 5 L HEN N AEHEIT W LA 4L I R % mem_init(), H1 page.s Y P A7 A B AR kR R)
do_no_page()f1 do_wp_page()i%i. 7EBIEFTERR AT S HIREREERAE RS, BIE FZ SO b i Y A AL 2 bR
BOK B BN A 45]
2.5.9 HIFNZTEERF B X tools

% H 3% N1 build.c #2757 FH 16 Linux &> H sk bl 20 il g 19842 a6 H bR QR4 & IR i — AN s AT 1)
W RZIRS SO image. HLEARIITHEE R 2 L —F N 45

2.6 AARZSRAPERFRIXER

7E Linux R, WAZ AN AR PHEAE TP om0, H—2 KRG WAL (5 5 Hhiii),
BRI A BT A int 0x80; 53—y TH & TE I W AZ I B (B2 12 Th i) 5N T BACi . W% R R 3k
JEFEA C B libe ALRGR Y. YFZ MRS R NI C 18 = R BR800 LB o

RG] BRI R E BT SO 1 PR R B S e T — M P T R AR D) il st 3
% libe 25 1 H0 (1K) pR BOR Vg 1) W AZ YR . I X e e R R RE R, N IR AR e % 58 8Bl FE A,
Bian, 7RG SO B s T i)« EAT RN AR AR AR B DL R U AR SRR RS ID RS
S

RAMHENEESREZONESE. EAET, BMNREPHBE —DNFHlS (£
include/linux/unistd.h Sk S0 SO, FFH LLZEEASEI .. NHBEF AN ZHBMHRERH, FAX
FERE, FEFPIIRAR SN 7o DRI H T Linux FRUAEEE LSB (Linux Standard Base) FIVT 2 H e bruE#AIAS
FOVFN R B3V R R % R4 ORI T2 0L Linux #7E RS ITEL T M AR 2 384

JE R R C 5 SO PR AT = T RE 0 FH 7 e 25, 0 an i NPt R0 A R AL B R A
T 22 R B R R G S S T BERR . 91T, BRUE 1/O FE R %Y fopen i1 felose #2241 T 5 R 451 open Al
close XA LIRE, (HEVEAEE SER o EXFMEDL N, R0 5 P At bb 72 ek B f i — 2L () 1k
e, (EEFE R et 2 (W hRe, i B HASAR e 1. REHRAEM s E0E SR il S L EAE R4
TELTFMEES 3 34y

2.7 Linux RAZB4RIFSEEINE

I Linux £:4E R 48N IS 1E Minix 1.5.10 #/E RS 0H AR Minix-i386 42 X 4 i I & [Minix
1.5.10 %A IR VE R ZE 2Bt A.S. Tanenbaum) (Minix it 55281 —% 1 ik i Prentice Hall & %
Mo AT Minix BEAR T LUZATHE 80386 ML AL b, (HHEARIH 80386 1 32 fidlLhl. kT fe
1% RS FIAT 32 M E R G MTT K, Linus T Bruce Evans [f1#h T P4 LT MINIX-386, Jf:
8 GNU I &RFIIF K TH gee. gld. emacs. bash Z5# 46 %] Minix-386 . fEX/~F& I, Linus HATAZ X
4Pk, JFRH Linux 0.01. 0.11. 0.12 Z5RA I KL . VEH M Linux MIIBEEPI R R SCR/v g, gl 7
AN T AT 6, WM g P Linux 195 IRCA N A% (I http://oldlinux.org 832 I 4H)

HH T Minix 1.5.10 ROk, 1 Bz IF AR V& raEw mist, B B A0 — T iz ot
Linux 0.11 ik A AZJEACHD, L AEAE H AT H F 0 RedHat 9 E1E RGhRUERI gn iR 8: R T4, JEZET
AT IR B UG ST boot-iamge. 323 1T AAE B PC ML ok vmware 25 WL AE iz 4T e . X LA
FEMMESOT I, BT B S A v T diff R LSS UGS FARAS ST AR S, Fe b I i .)]
ur, ARAESGE ARESLE linux H3ZH, BN MARIEAE linux-mdf &7, I F5 ZHAT T 1 a2

,23,

2.7 Linux A% % 5 SE 50558

diff -r linux linux-mdf > dif.out

e se 2 dif.out o RIS AR BT B o b 7 . A& BT I REAE RedHat 9 R 4w Linux 0.11 4%
PEARAS AT LU T Mt Ab R 4
http://oldlinux.org/Linux.old/kernel/linux-0.11-030920.tar.gz

2.7.1 &% makefile 3¢
{E Linux 0.11 WAL SR, JUPAAS T H S #5 a4 makefile SCEF, 75 B0 A AT LA T

a. ¥ gas=>as, gld=>Id. Hi{E gas M1 gld & HEA LK as #1 1d T .
b. as(Ji gas) AN -c LT, T LAELKS Makefile, [RIGRR 22 Jofiidl-c Smidik I, 78 % 3 H 3% Linux
T makefile SCfFrf, &R 34 4T b
c. ¥ gec M4 iEbRGLIN: -fcombine-regs. -mstring-insns LA X BT A 1 H % Makefile H (13X >
TR, {E 94 4EHY gee Tk C 3k A F-fcombine-regs ¥, ifij-mstring-insns /& Linus [&% gec
A S I 35, It LR IR gee i i A HRIZ AT .
d. 7& gec M9 iEbRE LIy, S8 h1-m386 LT, IXFE7E RedHat 9 "N 4 it K N AZ G ST s AN B
11 80486 LA I CPU If1#54, BRIz A ik iT LUZ 477 80386 Bl 1.
2.7.2 UL mIZF P RYIERE
as86 i P ANRE U ¢ T 5 IIVEREIE A, DA R 2245 H 1R 42 boot/bootsect.s S H 1) C AR E A .
2.7.3 RTFELEXSFER] align {ERYIERK
7t boot H 3 NI =M yh, align &R0 G774 BT Ca s . Jsik align Ja sl R EUE 245
X AT N AEE B R AR, T A D) 5 2 ey R I e b bk . Rk, R A
.align 3
T BB HURQ 1Y 3 KRAH 2/3=8):
.align 8
2.7.4 BN RILIRIERF
HTx) as AN, H i A SR ok sy, I O @ AT EN T e — AR T A CPU
A o DRI A ARZARRS T R __asm_(“ax™)Fy ZE A 2e o 4 A fs/bitmap.c ST 20 4726 47 I, fs/namei.c
A 65 47 A%
FEIR NI G AAS S M T B L A X A e s WA R /A B . 4514 include/string.h 26 84 17
Msitdit) faxt, "ex™);
i A TR
Dk
275 c EFEEEICHEAPHSIART
FEFFR Linux 0.11 I By IV s, 7E51H C R prh A SN R BA AR B A H I — P RIZF4F 0, 1M
H AT gee g i il A EF R T FHIX S g rh 5 IR ¢ A8 6, DRI BRIl g R e CROLAE RNV G 1))
T ¢ AR T N RIZk s, 64N boot/head.s F2)H S 15 1T
.globl _idt,_gdt, pg_dir, tmp_floppy area
.globl idt,gdt,pg_dir,tmp_floppy_area
o5 31 4TEA):
Iss _stack_start,%esp

Iss stack_start,%esp

2.7.6 RPN TR R R
FEE AR BER2 B, 1TLUT ROM BIOS i) int Ox10 YA FHIZEE#E 1S fs B, (HEA T 1R
R R MFTASREAE To h T REAE P BB AT SR BEe R T AR O RR10 Py SBcim S Ha RS, Al vy LA A

,24,

2.8 linux/Makefile 3L

FH R X AN $ s s 8 check_data32()'s PR BLARAT printk() 7~ bR 5 (B2 8 75 B0 tty_write(), 78 Y
A T2 AL R B AN REAT FH 1. 1XAN check_data32() B % LATE AR 20 70 R 4T B
PRI R I TR S, AR, BROMBIAAEE M 20, B T8 AR H %
T, iR H ML 0 TFes, 0 b A S Bt b 0, FTLL 4M R, BRI AE S Lk PEN
1L N A FHBEAA TR o linus 49 AT IR FEISHERL A, AR B F A R EL S T ©

/%
* VEH: fEBRsE A 16 HEHIBoR—AS 32 AL HE%.
* Z¥: value — ZEEIRIEEEL,

* pos —— BEFALE, B 16 ANTARE LR N SR, Bk 2, RISRIS WZE AR 32 T4 S BE AL T4 B .
* Rk TG
w IRBEARI AR P], BEORUE I R B0 S PR RE I E T . gee 04 VAN T -

* pushl pos //pos BERARSEBRIEARAE, B pushl $4
* pushl value //pos F value W] LLEAEAT G4 T4k 77 K

* call check data32

/] %0 - THEEARIIME value; ebx - BERALE.
// ¥ pos (e 16, #Eh0_E VGA Bor WAEEE IR IL,
// ebx R BITE btwE /e AR TR SR P R

// B 4 PR .

/] B BVIGEATRE LR A .

// WA B RIPE value=dedx

// B edx 15 eax ¥55EM 4 PNECEF .

/) A 28 fir, edx EIAPTEL 4 LLRRI(E .

/) A ASCIT 5

/) Fii% 4 W/ T 10,)R kA 2bs S 2 Ab.

/) AW L 7, R R SOns Y A A—F

/) WE RN ENE.

/] REEAETIE s WA

[/ HER RIS A 16 BEFIEL AR LU AL E0R 4.
/) HCHFALBE A RS 4

/] B WAL E .

// BERdE Ca R i i (B4 RoR5E 8 A 16 EHIED 2

[/ AU ERR, MR R B bR 1AL,

*/

inline void check data32(int value, int pos)

{

__asm___ volatile (
”shl $4, %%ebx\n\t”
”addl $0xb8000, %%ebx\n\t”
“mov1 $0xf0000000, %%eax\n\t”
“movb $28, %%cl\n”
“1:\n\t”
“movl %0, %%edx\n\t”
“andl %%eax, %%edx\n\t”
”shr %%cl, %%edx\n\t”
“add $0x30, %%dx\n\t”
”cmp $0x3a, %%dx\n\t”
7 ib2f\n\t”
”add $0x07, %%dx\n”
72:\n\t”
”add $0x0c00, %%dx\n\t”
“movw %%dx, (%%ebx)\n\t”
”sub $0x04, %%cl\n\t”
”shr $0x04, %%eax\n\t”
“add $0x02, %%ebx\n\t”
“cempl $0x0, %%eax\n\t”
” inz1b\n”
::”m” (value), “b”(pos));

1

2.8 linux/Makefile 3z

AT, Fo T TFHERT P R ST A4
5 B K LA S AT
2.8.1 ThEEHEIA

Makefile AR T HE 74 Ped P2 P AL B A 2 TR make Ja AT A A Bl S L
B2 HAE Makefile SO B8 ERHERE - 5 H AR S 3C

E5A Makefile 192411 H 38 make 4,

"R oldlinux. org WiE EIIA notrump $Et.

TUERE . EJGVERE linux H 3 RBRIH S — 30 Makefile.

,25,

2.8 linux/Makefile 3L

PEAT O e BE 1T BT LR ETE)

make T HFE/FHE A S — A KRR T R G PSR 7 SO B0 BB g 198, Ik H iy 2 X I L
FESCAE AT 4 1% . AEAE] make 2 1T, 5 E40E Makefile G SO, SRR T AR AT ST
IR HR, HE RN T EE T B SCRh B Rl 2. 8, PATRRF AR I H AR SO T 5B
(Y, XL H BRSO th g SR P B . — H.4 ’ﬁﬁ?*’l\éiﬁﬁ"] Makefile SCF, A AEIRBRRIE B
Py R4 rp () L AR SCIE S, AT make 2t BeEAT BT A LB g T A . make BRI AT A
Makefile B SCPERAS SCAE K B J5 16 24 18] (last-modification time) A Aff 5 JIR L8 SO A1 kA 750 37, %14
— AN BB S AR E Makefile RS B AN 4. 7F Makefile SCEEHT, TFSA# AT &1
FAT o STHFIT S iy ="ETE F 8 T — LS4l S AR S .

XA Makefile SCAEI = ZEE & FR7R make F2 7 55 20 MO G R34 BT tools/ H s 1) build $4AT
TR T A% i B AR e RN e — A I8 AT 1 AR WG S image. ELARJE XS boot/H) bootsect.s.
setup s {1 H] 8086 I gk #e AT e, 2l AR RS H BAT R . FERHE ARG o) e A R e GNU 1Y

A% geclgas BHATYR IR, JFIEH UL system. A build T FURX =5 dl & ile— AN WAL IS SCAT image.

ZIK%W BRI A S5 R 2.13 o

|head||main||kernel||mm||fs||1ib|

‘

Aﬂﬂ%i

E2. 13 AizdmiFiEiE/ At

2.8.2 NELERE
FIFE 2.1 linux/Makefile 3
1 #
2 # if you want the ram-disk device, define this to be the # WISRFREALH] RAM £ & #4115,
3 # size in blocks. B8 PR
4#
5 RAMDISK = #-DRAMDISK=512
6
7 AS86 =as86 -0 -a # 8086 Vg iEas FIEFLAS, WAHIRGHNH. G IS8E Lo
8 LD86 =1d86 —0 # 0 -0 AR 8086 HARFERY; —a AR gas fl gld ¥ RIS
9
10 AS =gas # GNU JC4ndi PFas FE R, AR G
11 LD =gld
12 LDFLAGS =-s —x -M # ONU MEREAS gld AT I BIRLT . & S —s S mg o

AWM SE R —x MIBRITE RS M Rox i EEAEbriEd H k&%
(RoRS%) FITE @S (1ink map), J&f8 HIERRL s —F
NAFHREEe S, Forh I TR BRI N AR AL RS . Bk
kUMW E R

,26,

2.8 linux/Makefile 3L

13 CC

14 CFLAGS

16 CPP

—
-2

#

|5 I |

[\
(e

[N
—_

#

163 13 |

24

ROOT_DEV=/dev/hd6

=gcc $ (RAMDISK)

oo HFRISOIERAT 515 R 21 A A7 P I B

oo NIAF S TR S

oo RS PTATSOE R RS ATS .

gee & GNU C BP9 dEdt o X1 T UNIX RIHA (seript) FEFIN S
ARG E SCPRIRATIN 5 AERTIOIN L $45 5 9F & SR AR AT

=—Wall -0 -fstrength-reduce —fomit-frame-pointer \
15 ~fconbine-regs ~mstring-insns # gec WM. AI—FFBURI \' RFE FR FATRLET

kI o Wall $TERFTAEEAEE; -0 MRS HAT UL
—fstrength-reduce PLALTEIAIER]; —mstring—insns &
Linus H N gee BENAIET, wfLLL$E,

=cpp —nostdinc —Iinclude # cpp & gcc FIRT (F) b FRFAESF . —nostdine —Tinclude [

SO A ZALZBRE R SL SO H b S, 2 -1
H ORISR E I H R B AR 2R H ok AR

ROOT DEV specifies the default root—device when making the image
This can be either FLOPPY, /dev/xxxx or empty, in which case the
default of /dev/hd6 is used by ’build

ROOT_DEV # 7& 75 01 £ N A W5 (image) SCAF I T4 FH 1R BRI SCA R 48

ERWEAS, XLk (FLOPPY) /dev/xxxx BE TS H, T&HM
build 27 (fE tools/HzkH) wifl FHERIAME/dev/hd6.

25 ARCHIVES=kernel/kernel.o mm/mm. o fs/fs.o # kernel H%. mm H3RAI £s HE=4R B AR

26 DRIVERS

27 MATH
28 LIBS

30 .c.s:

Eé all:

WSO, N T S AR B e AT
ARCHIVES C(JHRYSCAR) FRiRFFRIR,

=kernel/blk drv/blk drv.a kernel/chr drv/chr drv.a # RIS EEAEH . . aF

RIZSCHRE AN IR S, WS VR AT RIS R
FEAWEESCHE, B ONU i) ar FR P4, ar /& GNU A9 — 3
SRR ERE Y, TR B SRR AR SO R T

=kernel/math/math. a # BFiE EE SO

=lib/lib. a

$(CC) $(CFLAGS) \

1 Tib/ H o e SO P g 98 A FS R 3 S0

make ZMIEEA RSN . 1ZATHE 7R make FIHI T 1 (4 45 BT AT K
.o UMM EEA. s IEFET . * 2 Ron NI iz dr 4.

-nostdinc —Iinclude -S —o $*.s $< # FH1# gcc KAIAIE CFLAGS FTig e iYL LL A

AUEH] include/ HH ISk SO, £E3E 2 Mg 19 e AN HEA I G it
#5ik (=S) , TR SRS C ST I R 4 v 5 B X
AR SCAE . BRSO T B 2L BV R e SO RS C SO 44 2. ¢
b s JE8. —o FonHER A SCFIER. Hh$k s (Hi$@)
#OEHZ HAR R, SUURE - AMukdrt, KRR &5
* e 3PS
BRI, s IERRE Y UM PRI o HFRICIF. R 40K
BLZIREI R A2

$(AS) —c —o $x.0 $< # flH] gas GPEARRA AL F A PEN. o HARSCAF. —c s Hgik

$(CC) $(CFLAGS) \
-nostdinc ~Tinclude —c —o $*.0 $< # fFH gec ¥ C VBT TG 1F K H bs SCHEANZER, .

Image

B oG, (HAEA TR
ROLEI, * ¢ -2 o HARAF.

all RonBE Makefile Tl)20 Hbr. X HEEE image X,

,27,

2.8 linux/Makefile 3L

44
45
46

62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

41 Image: boot/bootsect boot/setup tools/system tools/build # PRI H#FR (Image 314 2

TR 4 AT, 435 boot/ H sk H) bootsect Fl
setup XA, tools/H &A1 system Al build X1

tools/build boot/bootsect boot/setup tools/system $(ROOT DEV) > Image

sync # XWATRPITIMm A B ATR R tools HaX T build TR
FEy CPHSvi A) ¥ bootsect. setup Fl system 3 {
LL$ (ROOT_DEV) MM U F 48 e 25 A 56 Bl N A% W8 SCAF Tmage s
AT sync AP A2 18 AT G ph IR ST RN S A8 I S B g .

disk: Image # Xox disk XAHAREH Image 774,
dd bs=8192 if=Image of=/dev/PSO # dd & UNIX FrdEidr4: S H—AS0fk, ML
BT R AL . bs=Rom KL/ B I F 5L
iF=RIRE AN SCIE, of =3 7Nty H B G S0 f
X /dev/PSO A2 ¥5 5 —MRALIK S A8 (R

tools/build: tools/build.c # f tools H3x NI build. ¢ FEBA BPFITIEE build.
$(CC) $(CFLAGS) \
-0 tools/build tools/build.c # i EBATREF build 4.

boot/head. o: boot/head. s # FIH Fmss . s, o BUA K head. o H AR SO

tools/system: boot/head.o init/main.o \
$ (ARCHIVES) $ (DRIVERS) $ (MATH) $(LIBS) # IR tools HgtH[f) system X1
LS AU T A
$(LD) $(LDFLAGS) boot/head.o init/main.o \
$ (ARCHIVES) \
$ (DRIVERS) \
$ (MATH) \
$(LIBS) \
-0 tools/system > System.map # A% system 2. /G > System. map F7~
gld 77 BR T G L E WA AE System. map SCAEH
KT System. map SCAF IS WERE S5 1 368

kernel/math/math. a: # BF A H KB nath. a B F—4T_ BRI 6r 2529,
(cd kernel/math; make) # N kernel/math/ H3%; 24T make T EFET.

NI 66--82 471 L BEAL IS

kernel/blk drv/blk drv.a: # A REBCCH blk drv. a
(cd kernel/blk drv; make)

kernel/chr drv/chr drv.a: # PP RECCAE chr_drv. a
(cd kernel/chr drv; make)

kernel/kernel. o: # % HFEER kernel. o
(cd kernel; make)

mm/mm. o # NAAEFIAEE mm. o

(cd mm; make)

fs/fs.o: # MRS HFMESR fs. o0
(cd fs; make)

lib/1ib. a: # FEpR% 1ib. a

,28,

2.8 linux/Makefile 3L

107
108

—_
—
(e}

—_
—_
—_

[
—
[\

—
—
w

(cd 1ib; make)
boot/setup: boot/setup. s #OIX B IFIRR =47 M8 H 8086 VL 2 FliEFE 4%

$(AS86) —o boot/setup.o boot/setup. s # Xf setup. s SCAFHEAT G iR A K setup X
$(LD86) —s —o boot/setup boot/setup.o # —s IEINL/REIER B IR CHEF IR 515 5.

88 boot/bootsect: boot/bootsect. s # M. L. A28 bootsect. o AL 5] Tk,
$(AS86) —o boot/bootsect.o boot/bootsect. s
$(LD86) —s —o boot/bootsect boot/bootsect. o

92 tmp.s: boot/bootsect.s tools/system # M 92——95 X PYSTHIVEH ZAE bootsect. s B2 P ITSLZs N

—ATH K system CHFKEE B T BN “SYSSIZE = system SCAFSEFRCHE”
—AT(E R tmp. s S, SRJEHF bootsect. s AR INAEH G o HUAS system KJE TV
HHEA A 1s X system AT RKAIR BR, H grep dr 2P HAT ESCHF5 507 B
55, FHERLRAALE tnp. s GNP . cut T B 258, tr T Z2BRATRERIGSR .
Horr: (SEbrKE + 15)/16 HT3RAH Y BrKEFR. 1717 = 16 F75,

(echo —n ”SYSSIZE = (”:1s -1 tools/system | grep system \

| cut —¢25-31 | tr "\012° ° ’; echo "+ 15) / 16”) > tmp.s
cat boot/bootsect.s >> tmp. s

H H H O

clean: # MPAT make clean’ I, FREHAT 98-—103 1T EIMar4, ZeBRATA iR 4 Bt Se ko
7 rm SR AT A, I 5 SR B AR SO, I A SRR B
rm —f Image System.map tmp make core boot/bootsect boot/setup
rm —f init/*. 0 tools/system tools/build boot/*. o
(cd mm;make clean) # HEN mm/ B3 $AT1% H % Makefile XA clean FE .
(cd fs;make clean)
(cd kernel;make clean)
(cd lib;make clean)

backup: clean # IZXHUULKE P SE3AT BT clean BN, SRJEX) Linux/ H sk AT H4i, A0k
backup. Z JR4E 3. ed .. RTomiBR| linux/M E—2% () H*%;
7 tar cf - linux’ K70 linux/ HRZKPAT tar ARIFET. —of Ry 200
#OFTIUIRS SO | compress — Rk tar B IS T B EERAEC)
AL IR AEFEIT compress, FEF R4AFE T (1% A7 B backup. Z ST
(cd .. : tar cf - linux | compress — > backup.Z)

sync # SEAEGE I HEE S RIS B S B A g

dep:
% HARECEU T2 SO 2 TR AR DG JR o AR IR IX L8 OC R A2 T 45 make FH KM & 1 75 B2
EEAHAENRE . UYL it J5, make gl il AR BUPAMKOC R, B IES 1%
SR E*. ¢ XX, BARTTEEI R .
AR R g T sed X Makefile SCfF CXHLEIE A) FEATALEE, it A MER Makefile
SCfFH #8# Dependencies’ ATJS I FTAAT CRIHMA 118 FFARIIAT) » JFAZH tmp make
IEE S (R 110 4TMIPERD) o« SRJEX init/ B P — C e (Hsz g —AN e
main. c) PUT gee TALHERAE, M bRE S URTALEERE P4 H HAREAS H bR SCAAE MR ,
I HIX LR FF A make 1575 X T8 NESCE, FOACEERR P4 H — > make AU, FHogh g
B S A NYRFE T SO H AR SO AN b AR ¢ R —— 1% I8 S LS R BT Sk SR
111 ATH IS SEFF B ($D) FE . XHES$T ZIXAJFITH I shell AF 5 1I1E
AR SEETALBE 45 AR I 2 s B 34 tmp_make T, AR E R 1% B SO & R GHT B Makefile SO
sed ' /\#\#\# Dependencies/q < Makefile > tmp make
(for i in init/*.c;do echo —n “init/”;$(CPP) -M $$i;done) >> tmp make
cp tmp make Makefile
(cd fs; make dep) # % fs/HF TFH Makefile XA FRE AR,

,29,

2.8 linux/Makefile 3L

114 (cd kernel; make dep)

115 (cd mm; make dep)

116

117 ### Dependencies:

118 init/main.o : init/main.c include/unistd.h include/sys/stat.h \

119 include/sys/types.h include/sys/times.h include/sys/utsname.h \

120 include/utime.h include/time.h include/linux/tty.h include/termios.h \

121 include/linux/sched. h include/linux/head. h include/linux/fs.h \

122 include/linux/mm. h include/signal.h include/asm/system.h include/asm/io.h \
123 include/stddef.h include/stdarg.h include/fcntl.h

283 HERER
2.8.3.1 Makefile f&j 4y

makefile SCAF & make T AR TR0 E 0. Make T HFRF 00 F 3 HS L Ae AZhH e — NGRS
PSR % SC A 1A R TR R e r WA SC A 5 B T8 4 3 . makefile (104 BB 52 2%, I L I ARG L 1m0
makefile SCAFYELETRT B A 2H . VEAIUEITIE 2% GNU make i T

J3 TAEH make FE7, /R 2 makefile SCHEK 25 1F make ZAELAH 4 TAE, %, makefile X2
VF make W2 PERERE—AN SO YBAFE T, makefile 14 17] BL45F make 3BT &R 4 (i, 1754
T HR I PR A e SR

make [T FE 50 2 AN AN TR IR B o 72 58— NBY B e BEIUIT A 11 makefile SO DL A3 75 1¥) makefile
SCPES, CSRPTE AR R A BRI s A AR, A T H bR 5 LS e A R G — i 4
Blo (EZE B BOIal, make il XL Py 45 R KA SE MIEAN H bt % 75 B g, JF ELAE A AR . A)
S (e

2 make FF RN, MAMEUGLH C AR SO LI R . WER— AU B NG T,
WA h TR IER, S MUEZSLSCAER C AT FE P K W B g 1F o BRSP4 A — AN S YR
XS S) H kRS (object file)o 52, WURARATIEACHS SO w2 T, IS4G 1 H bR SCEEASES 2 Wl 4
VST PRI 2 LRIl Gt 1 U P 00 00 A — s DA AE BT 16 T A T S 1

fAT 5110 makefile SCAF& AT — LU, X SE RN EAT W R K

H#r(target)... : Jo¥le 444 (prerequisites)...

T4 (command)

Ferp HAR R Gl R AR AN ST AR Bl — AT AT SO B H AR S H st T BLZ
PR EERBGE SN 4 7, LRt ER (clean’) . JEHRFAFZ NI A, A E HAR A AT
A B RSMERABULA SO 1 e make T ZEHATHERAE. — DRI BT 2404, &S H
AT e VTR, IR EAEREA i AT L RTBEN — NRIRRAT | IO R S I

R ARG I F SR T AE S Ah A Hak gk 2, IXIF A BCE IR i 25 EA TR
WIAT . DL, ARZINOB BB TS, (3 BENEAE make AHLSCHAAT 1 H sk h BT B SE vk 4%
o Rty I AT A AR ER AR BB BiEAr AT EARE RARTS DURER A S A2 &
F 3 A2 S I E R AL H AR B SIS AT AR A @ PAT AT BEE A P, S~ BRI i AT Sa
A, CFRENIITAL H R AT $< RER AN AP K2R — AN e aetth; "$@ Rom HARX % 7iohefy
—HAZRRIX AR T .

AT, SER AL T A LI, XSS A A AT Ut] N [332 $< 12 5
e gtt. Bilhn:

foo.o : foo.c defs.h hack.h
cc -¢ $(CFLAGS) $< -0 $@

A s< mi st A sh L ek foo.c, 1M$@)£ B #h foo.0
T ik make AEMEH SIMRVIOR B — N HARS S, RATLAARTR Ef 4, 55— A2 HR ek 2

,30,

2.8 linux/Makefile 34

G, LRI make B R S MU IRRE P SCAERISERS CREFPIJR S0 R 248 TS B R o

JESERIN R make F5FP e BRI 205 (RAEX TN 2 AR T, B 112 5
P S AT PR RS UL I D o T) it — XU SR o U SR P S 4 ST PR 4%
DUSEINEE: S N S win e S A BN O E R G WD M VSR & A E R AR SR & | B PN I P | 1
[$<{EE*>.c SCIFA . IS¢ make BRI SOEHRF*.c R di i3 lx.s RS

.c.s:
$(CC) $(CFLAGS) \
-nostdinc —Iinclude -S —o $*.s $<

WE AR T A RN, FEAEAT AR 5 e SR I A2 e —AN H s (target) U
SR, A AR R 22 iy 2 PR A — 2 B S 45 Ao Biltun, 55 H br'clean'FH SC I 75 43 MR (delete) iy
AR AT ZAT Se gt MRl — AR 0 T e] LR Ae] B ok 2 A S L ST, 1T IR 8 ST At
KRN H AR . make FRHESC A RIAT Ay 2 LB SR BB H AR o NPT DAL W e K An] i i
AT —MEAE

—A makefile SCHAR AT LLEAT BRI LA L S0, {H—/NE L) makefile SCPF R RF 25 A 1E 2411
U, BOAT e R ZEL IR R R A3 2, (HIEAR EAR R A1

makefile SCAFfJn AL BT RT G R A2 H] Tl make SREfE S B B EE —ANHENS . Hin 254k
A Bhit JE, make BB XSSO R, TR RS 1%L R BT *.c S0
2.8.3.2 as86,1d86 @1t

as86 Al 1d86 S 1 Bruce Evans 25 1) Intel 8086 4w ¥ 27 FIERLFE 7. ‘B 584 24> 8086 174w
S o, (HEITT LAk 386 AbBH 284w H 32 7 FACHD o Linux A8 & AAN & T 8% 16 07 11 J7 51 5 [X. (bootsector)
FREDFN setup —HEHIHATACHD . 1% gm e a(01EVE S GNU MV g se B R AN A1), (HIELT Intel
BV S 5 1k AN R P A S 55D

Bruce Evans J& minix #:/F R4t 32 A RA R F £ 4177, b5 Linux F14145 A Linus Torvalds /&R 4 1)
A . Linus A& AN\ Bruce Evans JI8HL 2% 2 T A/ O UNIX ZEEE R AIR, minix #/ERZ AL
Z AP IR A HARBR T A 45 B, IX 30k T Linus 7E Intel 386 18 RE5 0 LT & — AN HE S £
YEZRGE, It Linux #:E R SR04 5 Bruce Evans G & S K &R .

A XA A IR A5 A RS W] LU FTP JIRS54% ftp.funet.fi 1 2R k9 25 (www.oldlinux.org) L
T
XA PP AL R v R T R

as Ml A 7 VR RE I

as [-03agjuw] [-b [bin]] [-1m [list]] [-n name] [-o obj] [-s sym] src

BOAGEE (R T LAUFBGAMELAAL, Hg R IBRA A S E; A HU a ta&, WASHEHH)
-03 32 Pk s

list TEARERTH bR

name BSCAFIIEAR L TR (BRIAEEE “ “IFMy B2
TR A5

-0 M 16 LRI BT 4R

=3 M 32 LA BT 4R

-a JFAY as. 1d B3 ML I

~b PR RIS, ST AT LR S 44

-g fEHPRHETAEAN A RS

—j AT BT A B o K kgL

=1 PEAESIERSCAE, S T AT LARBE AR SR 44

-m EFIRPPY R X

-nJE HERBEAER A RR (RIS LR H b)

,31,

2.8 linux/Makefile 34

-0 PPEHEFRICIE, JRERHEARSUTA
—s PPERPS IO, JRERAES ST A
U CREARE AT S AR RN IR E BUIAT 555

-w ARRESER

1d JEFAR A R A ML T

$PFAERC Minix a. out M AS :
1d [-03Mims[-]] [-T textaddr] [-11ib_extension] [-o outfile] infile...

X TAE R GNU-Minix [a. out ¥ KIRRA :
1d [-03Mimrs[-]] [-T textaddr] [-1lib_extension] [-o outfile] infile...

EOARE Br T LU FEAME LA, eIkl R)
-03 32 kg s
outfile a. out & HH

-0 JAERA 16 R BERN Sk a5 M, I HOW-1x I A 186 1 H 3%
=3 JAERA 32 LR BERN Sk AR, FF HON-1x kI 1386 - H 3%
M fEbRER R B OR DRI AT
T JE I EREE SCA T e (i S5 T strtoul A0
-1 EMIRLS S E (1&D) i
-1x #¥J%E/local/lib/subdir/1ibx. a I ABERE LR £
-m fERRAER % LR OB IR
-o R SCIRA, R SO
v PAEES TP E AL
-s 1E HFR SO IR BT 155
2.8.3.3 System.map 3
System.map A TAEBN ST 5 R A5 B F75 KB T a9 AL N HUIE — A3 . B RHR A
Mg, mtarsE—/NEX N System.map SC2F. YWNAZI2 AT AR, @i System.map SCEE IS
FIEMT, AT LA B — N R N AR 44, B .
FIH System.map 75K XM, 75 NAZBUHH R P ARSI, il DORISTRA TR A 2 R 5 B 75
SERFEBI T R

c03441a0 B dmi_broken
c03441a4 B is_sony_vaio_laptop
€03441c0 b dmi_ident

€0344200 b pci_bios_present
€0344204 b pirg_table

AILAE H A FRA dmi_broken [{)AS AT~ A Z L c03441a0 AL

System.map A7 T8 H & R A (1 a0 N A% H &l sk G G 1 Klogd)Re s -k BIMH T . fE RGH BN,
WAEA LD S HUNTEACY Klogd 45t System. map HIAZE, W klogd H#f£57E =/ b7 48 5 System. map.
WK N«

1. /boot/System.map
2. [System.map
3. lusr/src/linux/System.map

S NI 5 92br EAE T System.map, {H B L, % klogd, Isof, ps DA He& 48 22 54, % dosemu,
T BAT — AN IEHA System. map SCPF . A ZSCAE, XEURE Rl v LUK 020 A P At kit Ay S B F Y
AT EALFR, H 5 AR R A

,32,

2.9 Kw/NG

2.9 FENG

AFEMER T Linux SRR R G WA A R 454, 45 T Linux 0.11 WAZIEACAS IR H SR S50 TE
o IR T AT R AU SO I BEAR T REMZ IR R R4 T 4E RedHat 9 R4 R4 iF
linux 0.11 A%, AR A B T B it)y . e Ja A linux A% H =% T 1) makefile SR, THIRx
P A% IEA RS A TR

,33,

3% 51 EshER (boot)

3.1 #fik

AFEFERGIA boot/ H 1 =M SO, WA 2.1 s IEWZERT—F e sm), X =43
BRI A, (HEMEH T PIFEMS X . Bootsect.s H1 setup.s &AL T Intel (VL 4iE 5181k,
FHAE] Intel 8086 Y124 1% 2 F1i4: 1% 2% as86 A1 1d86, I head.s MI{# [l GNU HIIC 4w/ 4% 2, #7221 GNU
() as BHATYR . X & AT&T iEVLIIC gniE ST .

5%& 3.1 linux/boot/HFE

A4 KSE(TT) RGBS E(GMT) il
bootsect.s 5052 bytes 1991-12-05 22:47:58
head.s 5938 bytes 1991-11-18 15:05:09

setup.s 5364 bytes 1991-12-05 22:48:10

PSR T R BRI 25— i 8086 1 4% 25 IIARLASY, FETENRIH Intel 80X86 kb FE 2%
) PC HLII 1 2 45 B K% 80386 32 frfi Mk T (R4 LIS BT 26 T i 7 LA T 46 B e AR 2 BT A5t
AN — R B rb A 5 PC HLREHBE L1 RIS FE R 80386 32 (AR BSR4 R Iy ik, 2 B W AR I 7
i b o0 FLPR I B2 SR T VA

3.2 BKIhEE

XHAE R —F Linux B0E RG0S0 LB HATIRAE. 24 PC MIHIEIT TG, 80x86 45K
CPU ¥ H B NS, JF Ml OXFFFFO JT 45 H AT REFPARS, XAkl % & ROM-BIOS (1)
k. PC ML) BIOS AT R S8 RGN, JHAEwBR bk 0 AL TFaA I aa b b . b, el nl o shik
AR (RS X, 512 795 RN AE4axnt ik 0x7C00 4b, FFkit 21X AT . JH 8
P T IR IK BSOS AR, . X L ARUA S AR TR L), (HIX DA R B PR N AR R A TAEISRE T .

Linux)55 AT I 35520 /2 FH 8086 V145 5 4 Yl (boot/bootsect.s), ‘&7 1 BIOS 2 N FI| A7 2%t btk
0x7CO0(31KB)AL, Y&l AT I 24 1 O B 4% Hihi: 0x90000(576KB)AL, FHA)H 2k %1 2kB 7
XA (boot/setup.s) S A A £ 0x90200 4k, fif A% L 4> (system AEER) T4k 52 A 21 Al 0x10000
TFUGAL, AR 24 INf system ARH K BE AN 258 id 080000 7715 A/ (Bl 512KB) , T LLE A4y 75 71 090000
AbTT AR bootsect F setup #idk . Fifi fKs system HEERAL B 2 N AFkL af ik, IXAE system A rp AR kA
RIAET S bRy stk o A8 100 AR ARRS AN RS R . 1] 3.1 T b Wt Linux SR 488 3 LA
JP e WAE TP B E . o, B — R EACR I — I 2 WA S R R A B 8] . 7R R GEINE
WAL 15 B " Loading..." 2R 5 5 HIBUE AL 33845 boot/setup.s Y HIACHY, X 5 — AN ek I i S R

,35,

3.3 bootsect. s F&JF

B bootsect. s fEF7
0xA0000 Z setup. s FEfF
0x90200 % D system f5EH
e [svstem FEHe) head. s FEF
o—> AUIPAT A1 B Lt
0x10000 / ="
0x7c00 [
0x0000
1 2 3 4 5 6

B 3.1 Bah3| SR AKERGFTMALEFRBHRHALERR

JAEER U E LS P DL K vga RO, R, S EEsR o A BE BonE .
SR G P HES Z2 48 MAHBIE 0x10000 % 42 0x0000 Ak, A PRI IS 2 RS T E 2 (£E 0x0000 Ab)
LI T A 32 FEAT 7 R B A 5E R IDT. GDT LA LDT BEnak, AbFE28HIPH b FE 28t AN,
SV TAE R B T H& A inivmain.c FH# mainQfL . FaR$EAE UEACHS & 7E boot/head.S Hrff), X
AT BTN WA P B DRES RIS T o YRR WUIRAERTRATAf — Dt T4, TS E8. fEE RS
AT eI 2 WA IA T AR

3.3 bootsect.s &[5

3.3.1 IigetmiR

bootsect.s fXAS 2R T | FHRE)Y, FERAMBINE — X E (GISMIX, 0RE (FEmD, 0 fiik,
% 1K), 5 PCHLINHE ROM BIOS HAKIG, 515k X H BIOS Ik £y 47 0x7C00 &b, SRJ5H A O
ENE| N AE 0x90000 Abo AL - B/ F & 1 564 setup BB (i setup.s i) MREELINE SN TE, %
$:45 bootsect 5 A7 & (0x90200) 4R 5 FIH] BIOS r It 0x13 B A 2 b 24w i 8h 5 | S B4,
FEAE B4 B 7R “Loading system...” 7. FRERE system ACEMEAE b g3 Y 47 0x10000 FT-4f ()1
Jio BEGHEMR S RGBS, BRI, WINPT ORA7 1) 5 | S48 1R AR R ot X 500 1) L A) 2 2
MIFhZE Gt LAAMA 42) HRAFH A5 T root_dev(5 | 581 0x508 Hiuhil4b),)i KBk 3 setup 25
[ITTa AL (0x90200) FHAT setup).

3.3.2 REGE#
5k 3.2 linux/boot/bootsect. s F2JF

SYS SIZE is the number of clicks (16 bytes) to be loaded.
0x3000 is 0x30000 bytes = 196kB, more than enough for current
versions of linux ! SYS SIZE ZZLINZMI 4L (16 454 1719 o 0x3000 3

W 0o DO [—=

,36,

3.3 bootsect. s F&JF

|oy o

DO |— [— |— = === ===
|O |© |Oo |\1 |G: |o*| |>-J> |oo |l\‘: |,_. |O [ReN[elEN]

[N
—_

163 13 |

! 0x30000 =192 kB (L Linus {84 T) , ST YarfImA=EELH T .
!
SYSSIZE = 0x3000 D3RG IFIER)S system BRI R/ . ZILFIER 1.2 W5 92 IR .

D IXHEAH T AR KBAE.

bootsect. s (C) 1991 Linus Torvalds

bootsect.s is loaded at 0x7c00 by the bios—startup routines, and moves
iself out of the way to address 0x90000, and jumps there

It then loads ’setup’ directly after itself (0x90200), and the system
at 0x10000, using BIOS interrupts.

NOTE! currently system is at most 8+%65536 bytes long. This should be no
problem, even in the future. I want to keep it simple. This 512 kB
kernel size should be enough, especially as this doesn’t contain the
buffer cache as in minix

The loader has been made as simple as possible, and continuos
read errors will result in a unbreakable loop. Reboot by hand. It
loads pretty fast by getting whole sectors at a time whenever possible.

DU 2 H TH IX 28 S B 3
bootsect. s (C) 1991 Linus Torvalds WANFTA

bootsect. s # bios— A3 FREFIME S 0x7¢00 (31k) 4, I HD
B3 T Hudik 0x90000 (576k) 4k, Ik B HL,

AR JEAEH BI0S W setup” HEEINEE] H A1)51 (0x90200) (576. 5k) ,
FH system InzEL B HuHE 0x10000 Ak,

R HArHIWZ RS EK B EI Y (8%65536) (512k) 775, HIE &7E
FERIX ALV AZ AT)) . FRARLE S PREFFT I 1o IXAF 512k HIB R IZ K N 1%
AT, THEXEEES ninix P —FA-S 2 M X EE .

IR QMR T, B ARSI AR S BOLIE A . HRET LHA .
JUEEATRE, - RIBUROIT A AR X, A8 A mT DR AR PR)

.globl begtext, begdata, begbss, endtext, enddata, endbss ! X T 6 MNE@FRIRAT;

. text NS
begtext:
. data DR B
begdata:
. bss DOMERRE
begbss:
. text NS
SETUPLEN = 4 ! nr of setup—sectors
! setup FEFHI B X 4 (setup—sectors) H;
BOOTSEG = 0x07c0 ! original address of boot-sector
! bootsect Wy JRgahnE CREGNE, PLTFRD
INITSEG = 0x9000 ! we move boot here — out of the way
!

5 bootsect HEIXH — BT,

,37,

3.3 bootsect. s F&JF

44
45
416

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65

| setup starts here

! setup P MIX B IT U

! system loaded at 0x10000 (65536)

! system BEHINZLF] 0x10000 (64 kB) Ab;
! where to stop loading

I

Db N) Bl ;

0x000 — same type of floppy as boot
WSO R G £l FH 5 5 | 5 I R RE () 3OO 25 5
0x301 - first partition on first drive etc

RSO RGe B fE 35— MR 35— 0K T, 7%,

SETUPSEG = 0x9020

SYSSEG = 0x1000

ENDSEG = SYSSEG + SYSSIZE
! ROOT_DEV:

!

!

!

ROOT_DEV = 0x306

entry start
start:

mov
mov
mov
mov
mov
sub
sub
rep
movw
jmpi

go: mov
mov
mov

|
|
|
|
|
|
|
|
|
|
|
|
|

TR R WA AT 2 MEEIEE 1 AN XK. XA Linux Z R AR 4

7, FARER S S

WK T=F1 &K 5256 + KK%T (WHI dev no = (major<<8) + minor)
(FEERT: 1-NAF, 2-0iE, 314, 4-ttyx, 5-tty, 6-FF47 10, T- AR &4 1E)

0x300 — /dev/hd0 — ARKIEANEE 1 MRS

0x301 — /dev/hdl - 2f 1 NMEAIZE 1 AM90IX,

0x304 - /dev/hd4 — % 1 DNEEKIZE 4 DX,
0x305 — /dev/hd5 — fREIEAE 2 MRS
0x306 — /dev/hd6 — 2 2 PNEEKIZE 1| DOIX;

0x309 - /dev/hd9 — % 2 PNELFZE 4 NI,
M linux W#% 0. 95 W& 5 B4 SRR a4 55T .

| AT, BT start bR TFIHAAT .

ax, #BOOTSEG
ds, ax

ax, #INITSEG
es, ax

cx, #256
si, si

di, di

go, INITSEG
ax, cs
ds, ax
es, ax

! put stack at 0x9ff00.

mov
mov

Ss, ax
sp, #0xFF00

|
|
|
|

47--56 1THEH 2 10 5 (bootsect) M B T B E 0x07¢0 (31k)
#5h5] 0x9000 (576k) 4k, 3£ 256 % (512) , ARG R
B G go b5, WEIAREFH T —iEa k.

B ds Bt as BN 0x7C0;5

¥ es LA AF2SE T 0x9000;

B HUE=256 7

PEHLHE ds:si = 0x07C0:0x0000

Hftdk es:di = 0x9000:0x0000

EREPIT, HElcx =0

Bah 1 AT

()R . IX B INITSEG #5 H ki 3 () B bk

¥ ds. es Fl ss #RE A8 fa AR BT EE I BL 4k (0x9000) .

1 TR P A HERRBAE (push, pop, call), PRI 2A 205 HEAK o

R Te4Er sp 381 0x9£00 (B 0x9000: 0x££00) &b

! arbitrary value >>512
TS BRE sk T, B DAL 6 M AR B A
sp MR KT 512 fwfs (RIihE 0x90200) 4k
HBET Lo IR A AN 0x90200 kit -4 Ab ik ESCE: setup F2)F,
MU setup FEF KA 4 NMIX, L sp BRIk
T (0x200 + 0x200 * 4 + HEAR K/ Ab.

! load the setup—sectors directly after the bootblock.

! Note that ’

is already set up.

,38,

3.3 bootsect. s F&JF

! 4 bootsect FEFHL G BRE IN# setup FEE A HHE .
| Wi es DAWEIT. (EBsHARIEE es &5 M H B HulE 4L 0x9000)

67 load setup:
! 68——T7 AT IW & & FH BIOS Hrilr INT 0x13 Hf setup Btk NREHELES 2 A5 X
U JFEREEE] 0x90200 JFARAL, JLik 4 AN . WEREHET, WIEAKE 4, I
DR, WAEIBE. INT Ox13 MM ik R

DB X

68
69
70
71
72
73
74
75
76
77
78
79
80
81

!
!
!
! ah = 0x08 dl = AT (RS RIEER 74/ D .
AR B
USRS CF B AL, JFH ah = RZESM.
! ah =0, al =0, bl = EXZEhEERA (AT/PS2)
I ch = B KBGE S K8 7, cl = RRHLIE &KX (F7 0-5) , I KHkiE 5 & 2 47 (f7 6-7)
I dh = KRGS dl = IREh&HHE,
U es:di —> WIKHELSHER .
mov dl, #0x00
mov ax, #0x0800 ! AH=8 is get drive parameters
int 0x13
mov ch, #0x00
seg cs I RIR T RE R EEUE os BEAAEas e Bt .
mov sectors, cx D R AR e X
mov ax, #INITSEG
mov es, ax VB B S B WS T es BUME, XL EH],
92 ! Print some inane message ! {ER7n 245 H (Loading system ... [A[%44T, k24 5T
mov ah, #0x03 ! read cursor pos
Xor bh, bh D EERRAT R
int 0x10
mov cx, #24 I3k 24 NERF
mov bx, #0x0007 ! page 0, attribute 7 (normal)

! ¢ch
! dh

!
!
!
! ah
!
!
! es:

0x02 — R X BINAE; al
fiE (FEM) 5 A 8 AL cl
= ik,

TR X
JFUR X (0-5 1), HEE S = 2 47 (6-7)
dl = IRBhATS Cln SRR B S, 7)

bx S>HRFEHRZEMIX; WER AN CF bRk EAT .

mov
mov
mov
mov
int
jne
mov
mov
int
J

ok load setup:

dx, #0x0000 ! drive 0, head 0

cx, #0x0002 | sector 2, track 0

bx, #0x0200 ! address = 512, in INITSEG
ax, #0x0200+SETUPLEN | service 2, nr of sectors
0x13 ! read it

ok load setup ! ok — continue

dx, #0x0000

ax, #0x0000 | reset the diskette

0x13

load setup

! Get disk drive parameters, specifically nr of sectors/track
U IR IR BN AR I SR, e R 1 e X A
U EURAS IR SN 2SS EL INT 0x13 Y FH AR AR (015 T

,39,

3.3 bootsect. s F&JF

—
—
o

—_
—_
—_

—_
—
[N

—
—
w

—
—
(IS

—
—
(@a]

—
—
[op}

—
—
-3

[
—
co

—_
—
©

[
[\
o

[
)
—_

[
[\
)

mov bp, #msgl D RN E R R TRT R
mov ax, #0x1301 ! write string, move cursor
int 0x10 U BRI AR
! ok, we’ve written the message, now
! we want to load the system (at 0x10000) ! FRZEIFUE¥H system FEHNZE 2] 0x10000 (64k) 4t
mov ax, #SYSSEG
mov es, ax ! segment of 0x010000 ! es = fFhY system BB,
call read it DA b osystem B, es MEIAZS L
call kill_motor UOORMIIREN A ik, XFERLRT LAATE KB A RS T .
! After that we check which root-device to use. If the device is
! defined (!= 0), nothing is done and the given device is used
! Otherwise, either /dev/PSO (2,28) or /dev/at0 (2,8), depending
! on the number of sectors that the BIOS reports currently.
DObSE, FRATAS A A AN SO R G e (RIFRIR I %) « Wik & fiw 7% (1=0)
DO AT 4 e o 15 WS A5 EEAR A BIOS 4 (1) B 14 i X H5k
U B BEAEFH/dev/PSO (2, 28) i /dev/at0 (2,8) .
DR AT AN B ST
U fE Linux FEIKM E& &5 02 2(S I8 43 /7R , R4S = typexd + nr, Hrp
U nr k) 0-3 200 R AKEK AL By C B D; type AEFRIKAIZEAY (251, 2M B 7> 1. 44M &%)
DR R4+ 0 = 28, FTLL /dev/PSO (2, 28) FRIMJE 1. 44M A BREH#S, HA 45 4L 0x021c
I [AHE /dev/at0 (2, 8) FRMIZE 1. 2M A BRANHY, ka5 72 0x0208.
seg cs
mov ax, root_dev DB A
cmp ax, #0
jne root defined
seg cs
mov bx, sectors VBN RS 88 AT ARAE IR IE i X B, W R sectors=15
DGR 1. 2Mb IR BhAE s Wi sectors=18, Ui &
D1 44Mb BREK . RUOASE RS R IREhAE, BTLLE E 2 A IK.
mov ax, #0x0208 ! /dev/psO — 1.2Mb
cmp bx, #15 AT RE R B X A AR =15
je root defined DWREET, W oax Pge s SIEh s w5 .
mov ax, #0x021c ! /dev/PSO - 1. 44Mb
cmp bx, #18
je root defined
undef root: UWUIREA—FE, WIZEIEH (ZEHL) .
jmp undef root
root defined:
seg cs
mov root_dev, ax DOKE RS I R A S R AR R

after that (everyting loaded), we jump to
the setup—routine loaded directly after
the bootblock:

Ft, PrARETAmAGEE, AT B
INEATE bootsect JTHI I setup FE/F 25,

jmpi 0, SETUPSEG I Bk 3] 0x9020: 0000 (setup. s FEFRIFFERAL) .
PO RFRER SR T 1

,40,

3.3 bootsect. s FE/ 7

—
[N
»

DR A TR

This routine loads the system at address 0x10000, making sure
no 64kB boundaries are crossed. We try to load it as fast as
possible, loading whole tracks whenever we can.

1% T FE K R G H N R B A A7 Hu ik 0x10000 4, FH6ff 52 AT 5 64KB [N AFIA A e B Al 1k B
AT N, HEERTRE, AU O ZR R S T) HH
HIN: es - JFANAEHbHEBE GEHE 0x1000)
sread: .word 1+SETUPLEN ! sectors read of current track
DY RLE T R X FURI DAt 1 X513 X
! bootsect Fl setup F£7 T i 1453 X 2 SETUPLEN,
head: .word 0 ! current head !Y|Wifik5.
!

1
1
1
!
! in: es — starting address segment (normally 0x1000)
|
|
|
l

track: .word 0 current track !METHIES .
read it:
DR AT BB . AT N Ak 64KB 1 AL, A IEEANTENERS . ¥ bx A TAs, TR AITEN
U AR IR T AR AL E

mov ax, es

test ax, #HOxOfff
die: jne die ! es must be at 64kB boundary ! es {HAAZA T 64KB Huhik i 5!

xor bx, bx ! bx is starting address within segment ! bx NEWNIMEILE .
rp read:
DI e E T N AR . PRE M HT BT I B 1 e R G A A v B AR (1) BE (HENDSEG) , 4 AN & 5t
I BREE A T okl _read An5 Ab4RSEEHE . HIE HFREFIR ML

mov ax, es

cmp ax, #ENDSEG ! have we loaded all yet? ! J&fF &M T &3 %dE?

jb okl read

ret
okl read:
UV E BRI IR Y G B R X L, BT ax FFAEAR
DR 1 R T S A T I B DX DA R BN B - T R MRS A TR R A X e R X, T
DB RO T I 64KB BUKERIBR . Aol R I 2 B BN AT B (64KB - BRI
D AL E) , A R T B e X

seg cs

mov ax, sectors IR S X A

sub ax, sread DO S ARG E s X A

mov cx, ax I ex = ax = HIRETE A X EL

shl cx, #9 ! ¢x = cx * 512 F.

add cx, bx I cx = cx + BN AW E (bx)

! = MRS, BOA SRR NI A

jnc ok2 read D EWAE B 64KB 7T, TBkE E ok2 read AbHAT

je ok2 read

Xor ax, ax VAN O g T AT AR B XN 2 64KB, T

sub ax, bx VR Z BRI A TS (64KB - BRI WAE A E) , R

shr ax, #9 DO BT B XA
ok2 read:

call read track

mov cx, ax Doex = ZIREEAE U bR X £

add ax, sread ! YETREE OB B X R

seg cs

,41,

3.3 bootsect. s F&JF

—
©

—
o

— == = —
Ol | (WO —

—
Ne)
[@p}

cmp ax, sectors Dan R T REGIE LIS R X AR, BkEL B ok3 . read At
jne ok3 read

DO REIE R RSk (1 SRSk EREE . AR E A5, WL —#EE.

mov ax, #1
sub ax, head DRI ETRE ST
jne ok4 read DO O Wk, DUDEE RS 1R Sk b e DX K
inc track e S N £

ok4 read:
mov head, ax DR TG SR 5
XOT ax, ax DOV M AT RGOS ek X

ok3 read:
mov sread, ax LRAT TG TE 15 bet X E
shl cx, #9 IR X k512 FAY
add bx, cx T T BN B T AR A

#/NT 64KB 1A AU, MBS rp read (156 47) &b, AkEE3e80N .
TR T B, Wi N — B R4

jnc rp read

mov ax, es
add ax, #0x1000 DOREBOERE B iR 10 R A 64KB BLNAF-
mov es, ax

xor bx, bx U IE BN BRI AR M S AR

jmp rp read ! Bk#: 3 rp read (156 1T) &b, ZREEEE .

) YR b TTUA B DR B X S B B esbx JTUAAL. 2 LA 67 4T Ot BIOS M4 T

! int 0x13, ah=2 KA.
lal - T es:bx - ZrhXITHAGIE .
read track:
push ax
push bx
push cx
push dx
mov dx, track ! Y ETHEE S
DO ETRGE b O X A

mov cx, sread

!
!
inc cx Pel = JFeRism X o
mov ch, d1 | ch = HuikiiES .
mov dx, head UBCYTHTHEL T
mov dh, d1 I dh = ®ik5.
mov dl, #0 Ldl = AT Ch 0 Fom Mgzl #%)
and dx, #0x0100 VRS AKT 1
mov ah, #2 ! ah = 2, SHAHXINEES .
int 0x13
jc bad rt DA, Bk 2 bad_rt.
pop dx
pop c¢x
pop bx
pop ax
ret

U BATIRS A AL ERAE CGREBLTP W DhRE S 00, PRk R read track AbHIK.
bad rt: mov ax, #0

mov dx, #0

int 0x13

pop dx

pop c¢x

pop bx

,42,

3.4 setup. s f&J¥

225 pop ax

226 jmp read track
227

228 /*

229 * This procedure turns off the floppy drive motor, so
230 * that we enter the kernel in a known state, and
231 * don’ t have to worry about it later.
232 %/
DR FRET ORI Sk, XFFRATEA NG e 4T O ARE, PSRBT AHLE T .
33 kill motor:

234 push dx

235 mov dx, #0x3f2 DRGSR s 1, .

236 mov al, #0 U A RZhEE, JGH FDC, A%1E DMA FIrP iR, SGHI Dk,
237 outb DR al HRR P A B dx 58 e 1.

238 pop dx

239 ret

240

241 sectors:

242 .word 0 U AF I T A Bl A A TE P XA
243

244 msgl:

245 .byte 13, 10 D [RIZEL #5647 ASCIT fi5,

246 .ascii “Loading system ...”

247 .byte 13,10, 13, 10 I 4L 24 A~ ASCIT B 74,

248

249 . org 508 | R R IHE) WHEE 508 (0x1FC) FF4E, bl root dev

U FEIR B IX A 508 JTURHY 2 AN R
250 root_dev:
251 .word ROOT_DEV DX AR SO R G ITAE R B4 (indt/main. ¢ P) .
252 boot flag:
253 .word 0xAA55 R AT bR R

255 . text
256 endtext:
257 .data
258 enddata:
259 . bss
260 endbss:

333 HEER

Xf bootsect.s X BRI UL B FIHEIA, 78 HER Enl DURZR B KR %R b Alessandro Rubini 3
i F A ABHE (Linux PYAZIEARAL IS8T) — i S0 (http://oldlinux.org/Linux.old/docs/) LL A VEAN bR T A
A ENITEAE R, IRASHM . T TIXBRET &AL 386 LRI NIgAT 11, PRIAHRTACKS LU 75 2 B
7 OIS B A AT A, B AR TR S —F 80x86 V14 M HLAE {4 (K AH DG A0iR (AT 23 [& % SCiik[4]
FI[16]), SR PR A 1S .
XTI R M) Linux W%, IXBRR P IEe s RN, JEAREE TS5 0.11 fRIBAE.

3.4 setup.s ¥

3.4.1 ThEeHmEA
setup A2 I1EH =22 R H ROM BIOS H I B LAY R EH, HHl X e 5l R A7 21 0x90000 JT4h
I 'E (R T bootsect B2 /7 FTEMMh 1), AU IS ERILR B I NAFATE WL R 3R 3.1 s, IXEES4

,43,

3.4 setup. s F&/F

R WAL PSR A, Bl P A B KB RE PR HH 1 ttyio.c FEFP4E .

3.1 setup BFIZEMHRBHSE
WAEHBEE | () b i
0x90000 |2 AR YA HII%5 (0x00-dge Acif), 475 (0x00-Ig I0ibifi)
0x90002 | 2 VRN | RGN IM FHRINY R ANAAEUE (KB).
0x90004 | 2 Y7 U T R DL
0x90006 | 1 SRR
0x90007 |1 TRHIEL
0x90008 | 2 2?
0x9000A |1 SR N AF 7% N 17-(0x00-64k,0x01-128k,0x02-192k,0x03=256K)
0x9000B | 1 WA 0x00-# ff1,1/0=0x3dX; O0x11-H.f 1/0=0x3bX
0x9000C | 2 RS 5 W REFES L
0x90080 | 16 il 2405k “1A@ﬁm%ﬁ%
0x90090 | 16 I SHER | 2 2 MR SHEE CnEf, WiE%F
0x901FC | 2 S WA R G AEIN 3445 (bootsec.s EPWE)

SR setup FE7KF system F5EEL A 0x10000-0x8FFFFC 2 Ak N A% R Guksi e system (14 AN 258 o i
512KB) # i) N #5214 A7 4 Huhilk 0x00000 Abo 2 T oK Nk b Wit I 77 358 27 A7 4% (idtr) F1 4 R A 77 3=
AAEAR(gdtr), JFAE A20 Hidik£k, HEH B AN T 8259A, KA A b S L FT I B A 020 - 0x2f.
B o B CPU (I 27 4798 CRO CIEFRHLERIRA T, MITHEAN 32 M4 iz ty, kiS4 T system
R H S BT THI BB 20 () head.s FEFE4k4LizT .

0T fgil head.s 75 32 AR FIZAT, EAREF IR EE THhWHIAFFER Gd F4RHER R
£ (gdt), FHLE gdt "PE T 24 AT AZARED B F IR R AE I B R ST . AE R IRIFY head.s FEFH 2 AR
PN AZ 1 75 T B A B SR R R

3.4.2 RuiEH
F)ZEK 3.3 linux/boot/setup. s ¥2fF

1

2 setup. s (C) 1991 Linus Torvalds

3

4 ! setup.s is responsible for getting the system data from the BIOS,

5 ! and putting them into the appropriate places in system memory

6 ! both setup.s and system has been loaded by the bootblock.

7

8 ! This code asks the bios for memory/disk/other parameters, and

9 ! puts them in a “safe” place: 0x90000-0x901FF, ie where the
10 ! boot-block used to be. It is then up to the protected mode
11 ! system to read them from there before the area is overwritten
12 ! for buffer-blocks

setup. s 15T A BIOS HHERHN R G40 s, IR i L Tl 2 R 48 W A7 I03E 4 3)y o
I setup. s f system L&/ bootsect F| SH Nk BN AET .

EKBACHS I H] bios A RWAF/ B/ e 40, I XS HUR] — 4
“ar)7 Hig: 0x90000-0x901FF, R JE K bootsect ﬁﬁ%ﬁ%?‘f
I Ty, SRJGAERE e phHe T o del 2 1 F AR B 1 system $2HL.

[S2 IS [PV}

! NOTE! These had better be the same as in bootsect. s!

,44,

3.4 setup. s f&J¥

Slel=ls s

)
—_

QO[O Lo [Wo | |DND DD DN DD DD DO Do DN
RIEEEIERIBISSIS RSN

£ 18
> o1

44
45
46
47
48
49

U BN XSS H R AF Al bootsect. s HHIAHIA] !

INITSEG = 0x9000 ! we move boot here — out of the way ! J&K bootsect FTAbHIEL.
SYSSEG = 0x1000 ! system loaded at 0x10000 (65536). ! system 7F 0x10000 (64k) 4t .
SETUPSEG = 0x9020 | this is the current segment | ASFEREFTAEBHIL

.globl begtext, begdata, begbss, endtext, enddata, endbss

. text
begtext:
. data
begdata:
. bss
begbss:
. text

entry start
start:

! ok, the read went well so we get current cursor position and save it for

! posterity

Dok, FENRMAIEREEIER, IUAER AR EORA7 LA 45 Ja fEH]

mov ax, #INITSEG ! this is done in bootsect already, but..
! K ds B RHINITSEG (0x9000) o X EL47F bootsect FEFFH
| B, B setup FEFF, Linus S48 9 R R
D E— .
mov ds, ax
mov ah, #0x03 ! read cursor pos
! BIOS 17 0x10 B GARThAE S ah = 0x03
I i\: bh = 5
PRl ch = FHiITIREZR, cl = Hfig N,
I dh = 475 (0x00 J&Tii¥) , dl = 15 (0x00 Jj&7id)
Xor bh, bh
int 0x10 save it in known place, con_init fetches
mov (0], dx it from 0x90000

PR BUCR YRR AT BAE B A AE 0x90000 &b, &
HIAEAL I 22 R HL

! Get memory size (extended mem, kB) ! N 3 Ay ENAERIK/ME (KB)

|
|
|

LA TR 0x15, IThfES ah = 0x88
i&A); ax = M 0x100000 CIM) AEITFEARIT ENAE RN (KB) .
A7 A CF B, ax = HESS.

mov ah, #0x88
int 0x15
mov [2], ax VOB R N EE AL 0x90002 &b (1 AN .
! Get video—card data: D N BH THCE AR YT B
! i H BIOS d1 ¥t 0x10, ThfiES ah = 0xOf
! R[E: ah = PP al = Boatial, bh = METERTL.
I 0x90004 (1) ALY HI T, 0x90006 F R, 0x90007 F4551%L
mov ah, #0x0f

,45,

3.4 setup. s F&/F

65 ! Get hd0 data

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

int 0x10
mov [4], bx ! bh = display page
mov [6], ax ! al = video mode, ah = window width

56 ! check for EGA/VGA and some config parameters ! fue&r @ n /7 (EGA/VGA) FFENSH.

U R BIOS i 0x10, BInTheEkse —HUy A5 R

! ThEeS: ah = 0x12, bl = 0x10

! 3&[A]: bh = BaIRE

! (0x00 - iz, 1/0 ifl1=0x3dX)

! (0x01 — FrfafEX, T/0 i 11=0x3bX)

I bl = LM ERHNAT

I (0x00 - 64k, 0x01 — 128k, 0x02 - 192k, 0x03 = 256k)
lex = B REEESH(SIREF)G)

mov ah, #0x12

mov bl, #0x10

int 0x10

mov [8], ax I 0x90008 = ?°?

mov [10],bx ! 0x9000A = “ZHE[FBRNAE, 0x9000B = Wik G/ Hfh)
mov [12],cx ! 0x9000C = /n REMESH.

DR —MEE S R (BRI RS HRD

DS LM S HCR I E TR T T R R Ox41 T EE L T0E 2 M A

D SRR 1 ARNJAH, WS 0x46 (117 AL R fHX e 2 MEE

D S ECRE . RS 16 4771 (0x10) .

R Y BORE Y 20 0 R A BIOS AT RPN I S KR, 0x90080 ALAFTRER 14>
DBEEEIER, 0x90090 ALAFIIER 2 MEHE I .

mov ax, #0x0000
mov ds, ax

lds si, [4%0x41] ! BUPWrm & 0x41 A9{E, WRED hdo ZER > ds:si

mov ax, #INITSEG

mov es, ax

mov di, #0x0080 U AR H bk 0x9000:0x0080 = es:di
mov cx, #0x10 VB 0x10 FT .

rep

movshb

! Get hdl data

mov ax, #0x0000
mov ds, ax

lds si, [4%0x46] ! HUhWrm & 0x46 AOME, WHED hdl ZEEEHIED>ds:si

mov ax, #INITSEG
mov es, ax

mov di, #0x0090 ! A& H AL 0x9000:0x0090 = es:di
mov cx, #0x10

rep

movshb

! Check that there IS a hdl :-) | K& RS EMAAER 2 MERL, WRAGFAENE 2 MRIGE
! FIFH BIOS i 0x13 FOE AR R ThfE
I ThEeS ah = 0x15;

)

,46,

3.4 setup. s F&/F

VN dl = IKENES S (Ox8X SEMEAE: 0x80 FREE 1 AMEAL, 0x81 55 2 AMEHD)
D EH: ah = 8D, 00— IXANME, CF &7, 01 —=2HIK, %F change-line 3 F¥;
! 02 — 8K (B e I #8)%4%) , B change-line 3ZKF; 03 —JEAf#L,

90
91 mov ax, #0x01500
92 mov dl, #0x81
93 int 0x13
94 jc no diskl
95 cmp ah, #3 DR CRE =3 7),
96 je is diskl
97 no_diskl:
98 mov ax, #INITSEG DB 2 MEEAAE, XSS 2 MR RIS
99 mov es, ax
100 mov di, #0x0090
101 mov cx, #0x10
102 mov ax, #0x00
103 rep
104 stosb
105 is diskl:
106
107 ! now we want to move to protected mode ... DN B FFGRERATE R A i TAE T .
108
109 cli ! no interrupts allowed ! ! MEEFAS ST
110
111 ! first we move the system to it’s rightful place

|
D E R RATE system LS B IE BRI R

! bootsect 5| FFEFIEHF system FERE AN F M 0x10000 (64k) FFARHIALE . H1 T 24mHE#

| system BB KK EEAL BT 0x80000 (512k) , B H AR s AS 2318 55 P9 A7 Hukik 0x90000,

I FTLL bootsect 22K H & 8h F] 0x90000 JFUGHIHL T, FHHE setup INEEE) e 15 I .

DR TR BRI I O 2 FHEAEAS system BIERFS) 2] 0x00000 17, RIFEA 0x10000 £ 0x8F T
VAR R (B512k) , EHLHL) W AR ES Bl T 0x10000 (64k) A .

112

113 mov ax, #0x0000

114 cld ! >direction’ =0, movs moves forward

115 do_move:

116 mov es, ax ! destination segment ! es:di=» H bl (K454 0x0000:0x0)
117 add ax, #0x1000

118 cmp ax, #0x9000 I C&AM 0x8000 BT AA) 64k AARLHE)56 2

119 jz end _move

120 mov ds, ax ! source segment ! ds:si=>yEHblE (FLEH 0x1000:0x0)
121 sub di, di

122 sub si, si

123 mov cx, #0x8000 I #3) 0x8000 F (64k FH) &

124 rep

125 movsw

126 Jjmp do_move

127

128 ! then we load the segment descriptors

BJE, BATINE B AT .
MK HIF U218 5] 32 AR BI IR, PIL 2 Intel 32 A7 ORISR J5 T I FIIR T,
A RIX T A R A 13 e B BT S 2R BB sk P PR B B o X VRS

lidt #7842 T B WA AL (L) s, EREREECE 6 77, 0-1 TR MR FTR I

,47,

3.4 setup. s F&/F

—_
[\]
©

—
wW
o

—
w
—

—
wW
Do

— =
a1
w

KJEE (7)) s 2-5 PR RTT R 32 frgetEdesthht (il , HEAS W i
219-220 17 R 223-224 4TI UEIH o HITHERFFR P IRE—ANRIT (8 A7) Fi i A A= it
T EUR ARSI A AL, EEE S R G R

lgdt /4 M T R L (edt) rfras, HIREHRAL 1idt R M. SRR
KPR AR (8 749 filiid T O B Bl A B (B0 195 R . Ferh s B
I KA FERR] (16 A7) « Brifgtidihl (32 67D BUMRALL. BORBAENAE . WSV LK
Hog gy Bstr ke . 2 WA 205-216 17,

end_move
mov ax, #SETUPSEG ! right, forgot this at first. didn’t work :-)
mov ds, ax I ds I8 AFEF (setup) X o
lidt idt 48 ! load idt with 0,0
Uon#E P iR RF R (1de) T 474y, idt 48 J& 6 T HERIA B
(I 21847) . I 2 TR R idt RIOEK, J54 78R idt £
[T T E 521K 8
lgdt gdt 48 ! load gdt with whatever appropriate
UOnace RRA TR (gdt) T AEe, gdt 48 72 6 i ERERN A &
IO 222 47) .
! that was painless, now we enable A20
DL R EIR T R, DRAERRATIIT A A20 Huhb2k. 2 IR P ARG 0% A20 15 5 ki i .
call empty_ 8042 PN AL I T
VA YNGR PEs S N A DN L T S i 4.
mov al, #0xD1 ! command write ! 0xD1 #y-4-g—K /N3 E Hd 3|
out #0x64, al | 8042 {) P2 ¥ . P2 ¥ LIAOAL 1 T A20 £k ik
U OEE B 3] 0x60 [
call empty 8042 D OSERFMINZE PR A, B A T
mov al, #0xDF I A20 on ! IEIE A20 HuiikZRiISHL
out #0x60, al
call empty 8042 I BTN A S, NIFKIR A20 Lk B4k iH .
! well, that went ok, I hope. Now we have to reprogram the interrupts :—(
! we put them right after the intel-reserved hardware interrupts, at
! int 0x20-0x2F. There they won’ t mess up anything. Sadly IBM really
! messed this up with the original PC, and they haven’t been able to
! rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
! which is used for the internal hardware interrupts as well. We just
! have to reprogram the 8259’ s, and it isn’ t fun.
AU B UNER . IR FRATT 20) h BT A T g R B
VRO TR EA AR IEF AL T intel CREFAIBEEIT S 10T, 7F int 0x20-0x2F.
P ZETR R ENIA SIS . ANERE IBM ZEJR PC AL T, UGB EAE Al ek,
'l PC ML bios ¥ IEAE T 0x08-0x0F, X Eerfy iyt gl] T~ A & A o b
PU T DARRAT T 2T N 8259 Hh INTHE ISR HEAT AR, X RUER R ED
mov al, #0x11 ! initialization sequence
U O0x11 RoRWiat a2 PR, & IO fr s, &Rl
DOVl . 2R 8259 Yk e B IE TOW4 dT AT
out #0x20, al ! send it to 8259A-1 ! Ki%#| 8259A EH5H .
.word 0x00eb, 0x00eb I jmp $+2, jmp $+2 1§ FKonHuite Ak,

DOARBEER S, BREIT — 4, EIERER .

,48,

3.4 setup. s F&/F

—
ol
S

—
1
[o¢)

—
(@)
©

—
(@3]
o

—
[op}
—

[
o
N\

—
o
w

—
»
I

—
»
(@a]

—
(o3}
(@3}

—
(o))
g

—_
»
co

—
[ep)
Ne)

,_.
-~
o

—
-3
—

—_
-3
Do

—
-
w

—
-3
(IS

—
-
(Sa]

—
-3
»

— =
-
o [

—
-3
©

[
o
o

[
co
—_

[
co
N

—
0
w

—
o
i~

—
0
(@]

[
co
»

—
oo
3

[
o
co

[
co
©

190

—
o

— ==
wW DD [—

194

|
|
|
|
|
|
|
|

!
"

out
. word
mov
out
. word
mov
out
. word
mov
out
. word
mov
out

. word
mov
out

. word
out
. word
mov
out
. word
out

#0xA0, al
0x00eb, 0x00eb
al, #0x20
#0x21, al
0x00eb, 0x00eb
al, #0x28
#0xAl, al
0x00eb, 0x00eb
al, #0x04
#0x21, al
0x00eb, 0x00eb
al, #0x02
#0xAl, al

0x00eb, 0x00eb
al, #0x01
#0x21, al

0x00eb, 0x00eb
#0xAl, al
0x00eb, 0x00eb
al, #0xFF
#0x21, al
0x00eb, 0x00eb
#0xAl, al

! well, that certainly wasn’t fun
! need no steenking BIOS anyway (except for the initial loading
! The BIOS-routine wants lots of unnecessary data, and it’s less

and to 8259A-2 I FRIER) 82594 M,

start of hardware int’s (0x20)
BEESGH ICW tr s, B, ZEdyibit.

start of hardware int’s 2 (0x28)
BN ICW2 787, WS REG T W5,

8259-1 is master

XD ICWS dr 47, A1 IR2 JEMS A INT,
Z: WA Z 5 1 i B

8259-2 is slave

LN TCW3 A2, R AU () INT JE 3 32085
JrH) IR2 51 E,

8086 mode for both

A ICW4 547, 8086 #Eixt; il EOI =,
TARILFR A KEANL . VISR, SR % .
IEE T ICWA fip 25, WA L.

mask off all interrupts for now

J e 320 7 BT i oK

JE M NS P BITAT v iR

:—(. Hopefully it works, and we don’ t

).

“interesting” anyway. This is how REAL programmers do it

! Well, now s the time to actually move into protected mode. To make
! things as simple as possible, we do no register set—up or anything
! we let the gnu-compiled 32-bit programs do that. We just jump to

absolute address 0x00000, in 32-bit protected mode

0, FEIXBCAARRENO, AR TR, 1 HBEA AR EZ R BIOS T (BR T
P BARIIINE©. BIOS FAREFERIRZ AN DA, 10 H e — s, e “EIE” 1
ORI T g

X BB 32 AR RIE

4

1T

BN NLZIRAEZF (Imsw — Load Machine Status Word), tHFFR

PRI ZT A7 4% CRO, HiLUHRRA7 0 & 18 3 CPU LAEAERY B,
! protected mode (PE) bit ! {#F I LLAA7 (PE) .
! This is it! | SUXFEMEMLERRAT!

mov
lmsw

Jmpi

ax, #0x0001
ax
0,8

! jmp offset 0 of segment 8 (cs) ! Bk % cs B¢ 8, WF% 0 4k,

BAICEN system BEEFLZ) F] 0x00000 FFanIHh 7, BT LLX B A b2 0. X BB
fHI 8 B Ry B NI BOERERF T, F T BRI 75 2 TN IR 75 2 00 DL K BT B2 SR (PR A
BORBFTKEE N 16 A7 (2 749 5 47 0-1 XoniFRIMEFR L 0-3, linux #E1E RGN

B 04 (REGH) M3 % S A2 T4 Rk 7% (0) i858 Jm i
WFFR (1) A7 3-15 ARMRFFRINRT], Fir HIEES LI T LABOE R RF

8(0b0000, 0000, 0000, 1000) F i RAFR L 0 A8 F 4 iR R 5 130, %5545 1
A FEH R 0 (200209 47) , R BBk A st 4 AT system FRACHS .

! This routine checks that the keyboard command queue is empty

,49,

3.4 setup. s F&/F

198
199
200
201
202
203
204
205

206
207
208
209
210
211
212

[\
co

[\
el

N}
—_
w

[\
—_
S

(N}
—_
(@)}

)
—_
»

[\
~
-

N}
—_
(o0

)
—_
©

[\
Do
o

[N}
N}
—_

222

[\
[\
w

225
226
227
228
229
230
231

! No timeout is used — if this hangs there is something wrong with
! the machine, and we probably couldn’ t proceed anyway.
DR XA TR A A a2 AR AT . X AR 5 - X AL,
DO PC AL I, FRATRBAE INE RGBT 2T .
DA YNGR CRETAARA 2 = 0O AU HI TS w4
empty 8042:
.word 0x00eb, 0x00eb ! X &M MBk a2 HIPL Y (BEA 2T —A)) , AH2 TSI 41 .
in al, #0x64 ! 8042 status port ! AT IR HIIRINAS S
test al, #2 ! is input buffer full? ! MERAZ 2, i ANZEM 20 2
jnz empty 8042 ! yes — loop
ret
gdt: | BB EIM . SRFFE B2 A 8 KM RR FF A H
DIXELEHT 3AMERFTI. 2B 1 WS (206 17) , EAMFAE. F 2 Tt RS
U HARF (208-21147) , 2 3 BUE RGEHR BURIAR T (213-216 1T) o BEAMIA T I FLAK
& W IR
.word 0,0,0,0 I dummy ! Z 1 AMEEBRF, A
DOIXHAE gdt KA N 0x08, gAY B A A5 ds (BOE BT I, A H I 2 XA A A
.word O0xO7FF ! 8Mb - 1imit=2047 (2048%4096=8Mb)
.word 0x0000 ! base address=0
.word 0x9A00 ! code read/exec
.word 0x00CO ! granularity=4096, 386
DX HAE gdt R HIMEFS B 0x10, Ynaidh Beigfrds (W ds 55) i, AT H 2 XMW -
.word O0xO7FF ! 8Mb - 1imit=2047 (2048%4096=8Mb)
.word 0x0000 ! base address=0
.word 0x9200 ! data read/write
.word 0x00CO ! granularity=4096, 386
idt 48:
.word O ! idt limit=0
.word 0,0 ! idt base=0L
gdt 48:
.word 0x800 ! gdt 1imit=2048, 256 GDT entries
D RJRRKER 2k 5, UOARE 8 -4 ARl — AN Bl 7 1
bOpr LR R IL A 256 T,
.word 512+gdt, 0x9 ! gdt base = 0X9xxxx
DAANTFATR R AR LR PE R IE: 0x0009<<16 + 0x0200+gdt
R 0x90200 + gdt (HIFEASHE B b i) A% ik, 205 47)
. text
endtext:
. data
enddata:
. bss
endbss:

343 HEEERE
H T IREHL S A S E, XBASFZUGHT T BIOS Wb, JHITAA8 Ay — et Rl A3t 1 i #AE
TR A TR A 2016 BIOS I, T A20 Mk ZR) R SR BE T TRERE, e PR AR
T Intel 32 A7 ORI IS AT 1) 8

,50,

3.4 setup. s F&/F

3.4.3.1 HATATERE
7E setup.s FEIFHUTEE G, RSkt system 8% sh 247 B hE 0x0000 FF4f 4k, i A 0x90000 Ak WijAF
T WIS — S R G HEASE, mEE (3.2 WF,

linh st SO

(gdt) p RIEBLHIAFT

setup. s fGi%
RASH

setup. s Fajzl?

JEK K] bootsect. s
TIPS T

FEREER (11b)
P A7 B AR (mm)

P
WZHLER (kernel) > system f5HL

main. ¢ fE£7

head. s F&/%#

x00000

& 3.2 setup. s BEFERERNEFEFTER

UEITIGI 4 R A AR, 3 (NULL) AH, S3RFAN 53 i A B ik 75 A s B ik
o EAER M RABI IR AL, R EEH HE 0X0000 Ak IXFEY setup.s HHUATEG —4484 jmp
0,8 ' (45193 47) I, HiexBhkF| head.s B/ THIRMAREEPAT 2o RV BUERERT, JHKIRE
Pt AE R HA AT 0, Al 245 gdt AR BURRIA AT "0 HaR 75 TR 5 A AU B A i AS 1

3.4.3.2 BIOS #i 5 BT 0x10
X HLEH IR A H 20 ROM BIOS S A4 o Wi FH iR) LA T Ih g .
A. RIS R R GLEiBhshfeitse):
3.2 FBERFEES (TIBES: ah = 0x12, bh = 0x10)
BNGRIAE | 2 77e% | WA

WGBS ah s E=0x12, RECE RS
bh TIhhE5=0x10,
bh TITRIRAS

B EE 8 0X00 — TR CHEIBUSRER T 1/O 3 LAy 0x3DX):

0x01 — FLga il (LIS AEA: 1/0 iy 1136 hE 4y OX3BX);
e b VbR) XA 0 - fe

bl CL 22 s A7 KD :

00 = 64K, 01 = 128K, 02 = 192K, 03 = 256K
ch I s LA A L

BRI

0 Bkl 1, WA 2;

1 PRkl 0, RA 2;

2 BEPEZ 1, IRAE 1,

3 FEPEZE 0, IR 1,

4-7 ARAEH(CK 0)

,51,

3.4 setup. s F&/F

cl PRATTT v A
&S VARTA
0 T 1 <Ml
1 JF¢ 2 2% 14
2 JFoe 3 <4,
3 TFo% 4 <]
4-7 RAfEH.
545 EGAIVGA JT 15 B H:
0x00 MDA/HGC;
0x01-0x03 MDA/HGC;
0x04 CGA 40x25;
0x05 CGA 80x25;
0x06 EGA+ 40x25;
0x07-0x09 EGA+ 80x25;
0X0A EGA+ 80x25 Fiff;
0x0B EGA+ 80x25 M1,

3433 EHREXSHR (“INT 0x41”)

R R, int Ox41 (K I) B B (4 * 0x41 =0x0000:0X0104) ££T8U I FEAS A& v W R 1y il
M A& 5 —MER A S E R . T 100%FE 21 BIOS K, X B AF R 455 2 50k M 41 1t i sk
FOOOh:E401h. 25 —AMEHLIEASER N O HbEA7 T int 0x46 H B) 47 E Ab

*R3.3 BWEEASHIEER

PR | KN | BECHER | B
0x00 | 7 cyl FE T £
0x02 | &% | head TSk
0x03 | 7 TEUG kNG R AR (L PC XT 4/, ek 0)
0x05 | wpcom TFUR S AT AMEAE TS (T 4)
0x07 | 7y K ECC PERKJE (U XT A, Heh0)
0x08 | i | ctl T (IR IE R
f70 KH
fr 1 TRE(0) (%I IRQ)
£ 2 R
f7 3 LSBT 8 I 1
7. 4 A H(0)
£ 5 FAEREIRIEHL AR R X, W 1
7. 6 2% - ECC HiR
7 A8V 1) FR
0x09 | 7~y PRUEEEIE (N XT A, ek 0
OX0A | 7y Fe A I (I XT A, ek 00
Ox0B | 7y R IR B a B IAE (S XT AEAH, HEh 0)
0x0C | Izone W4 <36 ki (45 1) AT
OX0E | %45 | sect Rl s X 2K
OXOF | 4% R
3.4.3.4 A20 Mt 2% a] &3

1981 4F 8 H, I1BM A & N A HFHL IBM PC 18) CPU 42 Intel 8088. 7&iZ bl Huhl £k
HAG 20 HR(AO0 — A19)., 7E4IN N4 RAM HA)L KB B E] AMB I, 20 fHuhk£E 2 o8 F ok 5-hikix 4t
WAE. HPTRE T hE i ik fE OxFFFOxFff, B Ox10ffef. X1 0x100000(1MB)fH) -1k HuhkFF 2R A
HiIR%E 3] 0xOffef. 4 IBM 24w+ 1985 45| N AT HL, 1)/ Intel 80286 CPU, HA 24 fidihht2k, i

,52,

3.4 setup. s F&/F

] Sk 16MB, I HA —~ 1 8088 et A I Siasi iz AT 7 e AR, BT HHEE T IMB & HIARE
% 8088 JLFESLIMbE T LIRS (HJE M DA — SeR P R X PP I SR S LA T TAE . AT
SEILSEA A, IBM AT A B T A — /N JF KT JE 84 1 0100000 Hiuhik LR o B 175 41 1) 8042
ST S B A R R DS CRrdom O P2, S P21), T8 T %51 kA A 51 T klx
ANHHELCRFAT o 055 BN A200 Wiife 2%, ML 20 J2 DA b # g bR . AT SEIR T ek

T ENLES B shiy, BRIASAE T, A20 Huhkgk 28 b, BT DASRAE R Gedb U8 HE M 7 ok TR S
{EE TS A MU A SR TR, BRI — A AR AR BRI DRI 3 e J LR)y v ek
EHE.

X A20 15 5 L BT 12 1 000 85 FH 7 v i aok v e B A 4 Tl i 1) g o 3X HLIY) setup.s #2/7 (138-144 17)
RIS R 7 pp g 2R (g il oo e — BE e A L T DA FH gy ok AT A20 Z2 144l

A LLHAE RGRE A20 [T A FNAE 1A A SR S R Is AT B M AT 3 R b v R o (1) —35 43
B R T 2 ARG, DRI AS R A P A2t o0t A20 2okl AT 44k . ks it T —A A20 R
T A% T (Fast Gate A20), “E4# 1] 1/0 i 11 0x92 SKACTH A20 15545, B G0 1 4 ekt i) B s 2) o B
o KA BRI S0 R G0t L AEATH 0x92 uifi FIRES I, HZ 1%l FH A m] REp L& e AL i
WA Cneosts i) I, NI R G e 1k

AT — 7 R Oxee 3 2R TT R A20 (5548, 5% 1 W 2s25 1 A20 (5545,
3.4.3.5 3.3.3.5 8259 Hli=FIE S H

8259A J&—Fh] gm AL [T I, B T U B 8 AN IR .l 2 BRI o, RER R
L 64 NI R RS, /8 PCIAT RAGANLT, (A TP 8259A it fr, JLnl i 8l 15 g b i) &
HIoER R L 3.3 Fim. Horh ACE A 1) INT 5 B30 32085 /19 IR2 51 E. 32 8259A it 7 1y 11 3
itk 0x20, MG 42 OXAO.

i £ TRQO —>|{IR0
HERLTRQL — SJIR1 INT SJIINTR
— Sfr2
A5 TRQ3 —>|IR3 8259 CPU
BT 1R — HfTR4 4
471 21RQ5 —{IR5 HHEDT-DO
PALTRQ6 —>|IR6 e .
JFATE 1IRQT —3JIR7
Hk 0x2X A0
S
CAS2-0
[
Sz
SEIN4HTRA8 —>{IRO CAS2-0
INTOAH TRQ9 — i1 INT
TRQ10 —>lR2
IRQ11 —5]IR3 8259A
PS2 FFRITIRQL2 — SfIR4 MUY
PIEFEAETRQI3 —|IR5 [
T4 TRQ14 — 5|IR6
{-RITRQL5 — SlR7
Hiuhk 0xAX A0

CS

=

& 3.3 PC/AT M RIZES 8259 =4I R4t

FERE R HIB SR, SR T FHRFDR SRR . fFRIRASE CPU f /] IN Bk OUT 454
XF 8259A S T WA R FE IR AS . — BSE T WIRAGnFE, O RIBEASERAEARAS, BB Fy R aT Bl B
Wi 1 A/ W A H R BB SR (IRQO — IRQA5) . I A4, U5 B3k vb 24 iy fe e 26 4 1 v e
T SRAE R IR A %, i CPU 5 INT 40 CPU #hrhiknidisk i3k, CPU MRV &, 5 MBI
2 D7-DO W54 FE € I BT AR 25X B () R W 536 Y, CPU I SR EOGE I 1R i) B0, I 4AuA T IR IR 55
FEF o
£ linux PAZH, IR SSRE b R4S 5 60 B R R BTS2 AN int 32 (0x20) FFAUR Cint O - int 31 4% T CPU (1)

,53,

3.4 setup. s F&/F

BRI), o B ep 5 YU 2 int32 - int 47
3.4.3.6 Intel CPU 32 IR EITHER

Intel CPU — AT LLAEPI M T as 4T, B S BECR ER B 50T Intel CPU (8088/8086) }
RE TAEAESERT, I 2 BB AT MTESS . 6T Intel 80386 LA F 1R85 v ik nf LUZAT7E 32 f7 {4
BER o R FIBAT AT ST 2 AT 4% 8 4G HIBR AR, SCRPEIUN AR, SCRF AR T4 B
B SRR AR

BRI R T IS T LS HAA Linux WAZIGEZEEAE, (b TR e TR, ek T Js B g faf 5
AT LAS 2 155 (B o AR SR B 238 RERE AT 15 J5 5 B ARG AE , A —FATAmiot. T BLIEH
fift setup.s F2/7F1 N1 head.s FEIFII1EA, ACATEE S] B BOERRAT . BRI 80x86 (1) TR FHEALH .
3.4.3.7 AFERE T

Intel 80386 CPU 17 4 /™75 47 JH A e A7 428 i) 20 B A A7 A5 B 25080 46 44«
GDTR (Global Descriptor Table Register) 4= JajitiiR 4 % 5 1745
LDTR (Local Descriptor Table Register) Jaj i ik 17 4 27 47 5%

XA AL T8 17 BHSR 7% GDT Al LDT. XA T NAER 0 TS B, 2 0B i
&
IDTR (Interrupt Descriptor Table Register) H Wik 177 2 27 47 4% ;

XA AP AR I TP WA B) CRIRR) R (IDT) IS BT P A B AR N 1 bk A 3447
AR T R f R T
TR (Task Register) {T-45 27 17 #%;

AT AR AL PR BS E SRS IR i s 5, B EIMT 45 Kl 454 task{} .
3.4.3.8 ITHIFFRE

Intel 80386 [zl fra i 4 4>, 40ldr 4 CRO. CR1. CR2. CR3. XLLFFA/F4RiNAElS h R4t
FEFPilt MOV #5451 WKl 3.4 iR,

31 23 |15 7 0
T F S %5 7 7 {5 R3
Page Directory Base Register (PDBR) Reserved
U 3 LML cRo
Page Fault Linear Address
(35

Reserved CR1

P TR E E[T|E|M[P
G Reserved T|S |M|P|E CRO

& 3.4 THIEFREN

B3 A7 4% CRO & REUIRE bR, EHaiE R BN RE B PR A& H

PE — 548X T A7 (Protection Enable, A4 0). WIS GE T % LLEAAL, £ fdi b FE 2% TF A 7 (45
X FNiEfT.

MP — PhAbIR S fEfEbRE (Math Present, LUERA7 1. T4 WAIT 3541006, DLARCA MG ER ST
EM — {5EL#H (Emulation, ECERAT 2)o 357275 T BT EL UM FE A% R T RE

TS — fE5- V)4 (Task Switch, LWHF(T 3). BEMTE VI A BESS Bt W BAZ LA, I H AR B B b 2E
BIRA 2 HTIRRAZAT .

ET - ¥ A (Extention Type, WRAL 4). MR T R T &H MO R (G 80287 i
80387).

PG - /7 Ti#{E (Paging, LUWHFAL 31D A7 $57 & 15 Al H TT b Lo ME s b e ey BE b RE . 2 L2 10
TN L AT B A

CR2 JII-J- PG BTN FH G344 . CPU 20 5 AR I 2 MM b R A AR % A T

CR3 [AIFEJELE PG b B EA/ER o 274 A CPU 48 %€ M4 uTia 47 AT Bt i i 3 H 5%,

,54,

3.5 head. s f&)%

3.5 head.s 12¥

3.5.1 ThREtEiA

head s FiF LN, 2R system BRI TFAA R4, SALHLR A A Btk head)
FUFFIGA . JURHLIFIA, P A RAE (R B 2T T . heads.s ITAWRLIF S AT 5 XA,
ORI ATET WIS R, JF LT GNU 9 gas A QIOPHERT SR IE . BRI REARHD
WAL 17 PR A2

X B SERr EANT N AEAE 0l 0 A TFEA M Ty o IXANFERF I Th RS LA B — . e i ANt
B3 Ards, EHRE T WIHRIR TR idt, 3t 256 I, FHAE SN RIUIYEE M — A HARERR I TR TR . SRS
TP E A RIIATIR gdt. ST EELEE 0 5 1M JFAR ALY P A LRSI 7, Kl A20 Hihk2k 2
HOERIF S CRBEE TR, WEV R & T AMb YLy Ak CPU s2fr L4 i) (IP MOD 1Mb)
HhEAR I N2, G SRRSO R R R I T, WIHENBENEIR . SR JGREF IR PC HLIE 153 A S A BEAS
O F (80287, 80387 B AR), IFAETSHIZF 4788 CRO i B AN bR A o 45 BEE B FEN A 14
TUALFEHLS], K5 0T H SRR AL B bt 0 TFEh AL (SEAFE R T AL B N A B, DRI IR BRI
W mig), RS I BCE LT Tk 16MB NAEI 4 ANTUER, IR B E AR, e a A IR AR A
P CE AEMERR 1 finivmain.c BRI CIHES Y, 12847 main()FE)F .

3.5.2 KGR
5%k 3.4 linux/boot/head. s ¥2/F

1 /%
2 * linux/boot/head. s

3 %

4 * (C) 1991 Linus Torvalds

5 */

6

T /%

8 * head.s contains the 32-bit startup code

9

10 * NOTE!!! Startup happens at absolute address 0x00000000, which is also where
11 * the page directory will exist. The startup code will be overwritten by

12 * the page directory.

13 %/

/%

* head. s 7 32 (7 HBMAG .

* VR 32 {7 S SRR 2 LR HE 000000000 TFEG 1T, 3% B [RIFE S 51 H S A7 7E 1y,
s PRIHGIX L 1) JE Bl ACAD R 4k 00 H SR 78 i el

*/

. text

.globl idt, gdt, pg dir, tmp floppy area
pg dir: # JUHRMSIEBAEIXEL,

startup 32: #1822 1T IR B/ MR R A

movl $0x10,%eax # X T GNUJLCHioR UL, BENEBEELL $ IHh, N Rk,
RN AHABELL % TPk, eax TRt 32 [ax A7 %o

— ===
% 15 |5 15 =

#OHOGER XB AT 32 s TR, IX B A$0x10 JEA Z TR 0x10 ZEA KA
BLATAT Ay, CIEIL SR AR BAIA TR P M EE AL, s I A S MR R R I
PR, AOCIEREATI UL IE S W setup. s 1 193 4T R B . IXHL$0x10 I F SURIE K
R 0 (F7 0-1=0) . EFE4 AR R R (B7 2=0) . YEFR DS 2 30 (f7 3-15=2) . "B/ IFIFIR

PIEMETH Linux FRE RS, gas Fl gld ©& 0 HITE 4 A as F 1d.

,55,

3.5 head. s f&)%

43
44
45
46
47
48
49
50
51
52
53

R

mov
mov
mov
mov
Iss

call
call
mov1
mov
mov
mov
mov
Iss

PRI (AR HAREE 2 ILAT T setup. s 71 212, 213 47)

MRS Sg: & ds, es, fs, gs PHIERFT N setup. s s 8 By (4R Bt f IR A5 3%
#OHEE 2 T =0x10, FFEEFHERRIBCE IR B P stack start AW, SRJE B0 Wb
FFRAARBAIAE. B e R BRiR R PSRN A setup. s FIHESR—FF.

%ax, %ds
%ax, %es
%ax, %f's
%ax, %gs
_stack_start, %esp

setup idt
setup gdt
$0x10, %eax
%ax, %ds
%ax, %es
%ax, %fs
%ax, %gs
_stack_start, %esp

#
#
#
#
#
#
#
#
#

F7N _stack start=»ss:esp, WHE RGHEMK.

stack start & XAE kernel/sched. ¢, 69 47T

W BB TR AT R TR

W% B A R TR TR .

reload all the segment registers

after changing gdt. CS was already

reloaded in *setup gdt’

BURSE T adt, 7 DA T A BB AT B 2 A7 58
CS AL B 51788 O HE setup_gdt TEB MBI T .

32-36 17 H TR A20 HuhE£E 25 C & HFH o SR &) A7 B dE 0x000000 4b 5 NAT =
—ANEUE, ARG HENAAEE 0x100000 (IM) Ab A2 75 2 X A E . Wik — EAHF RS, t—H
N2, WHIZEIEIN. FEML. FomHihl A20 LR ¥ kil, 4550 ARG IM BL E TR,

%eax, %eax
%eax

%eax, 0x000000
%eax, 0x100000
b

#
#

#
#

check that A20 really IS enabled
loop forever if it isn’t

"1b’ F)5 (backward) BEEEEIRRS 1 2 (3347) &
P 5F M R AHT (Forward) Bk RbR S 5 2.

* NOTE! 486 should set bit 16, to check for write-protect in supervisor
* mode. Then it would be unnecessary with the “verify area()”—calls
% 486 users probably want to set the NE (#5) bit also, so as to use

xorl
1: incl
movl
cmpl
je 1
/%
* int 16 fo
*/
/%

r math errors.

* VR AR NTX BRI, 486 MK 16 EA7, LM AEE M B S R,
% JbJE verify area ()" ATEE T o 486 HYH] /il 7 B4 484 NE (#5) BAL, LUE
* P EA T AR BRI AR int 16,

*/

NHIXBRERT (43-65) H TR ABCEATMAC IR IS H AR . ke B s il %747 2% CRO, 7F
AR AFAE VAL PR B IO N AT — AL FEBS 84, fn T VR A DU 5 B I A P 2 05 e AN AL
IV E CRO PR B AL BRES T FLAL EM (A7 2) , IR AL BSAEAERRE MP (f7 1) &

movl %cr0, %eax # check math chip
andl $0x80000011, %eax # Save PG, PE, ET
/% “orl $0x10020, %eax” here for 486 might be good */
orl $2, %eax # set MP
movl %eax, %cr0
call check x87
jmp after page tables # B3 13517,
/%
* We depend on ET to be correct. This checks for 287/387
*/
/%

,56,

3.5 head. s f&)%

* FATKI T ET bR RNERIYERAS I 287/387 fAAE 515 .

*/
54 check x87:
bl fninit
b6 fstsw %ax
57 cmpb $0, %al
58 je 1f /* no coprocessor: have to set bits */
99 mov1 %cr0, %eax # WIRARAE)) T Bk B bR S 1 A, RIS cr0.
60 xorl $6, %eax /% reset MP, set EM */
61 movl %eax, %cr0
62 ret

63 .align 2 # I align 2”04 SURISAEREID AR FEREE. ~2" Forim s SIS 2 B0 %,
B 4 07 SR A R

64 1: .byte 0xDB, 0xE4 /* fsetpm for 287, ignored by 387 %/ # 287 thAbFELRAY.
65 ret
66
67 /*
68 * setup idt
69 *
70 * sets up a idt with 256 entries pointing to
71 * ignore int, interrupt gates. It then loads
72 * idt. Everything that wants to install itself
73 * in the idt-table may do so themselves. Interrupts
74 * are enabled elsewhere, when we can be relatively
75 * sure everything is ok. This routine will be over—
76 * written by the page tables.
7 */
/%
* MBS W E T WA TR T T setup idt
*

kR WA RT R 1dt WE AT 256 NI, SR IA) ignore int W] ARSI

* RRFFR A4y (H 1idt $54) « EIESEH BRI TLUG e, SR et —1)

* HIEH I TS H B xR DR .

*/

PR IR R IR 8 AL, (AHAS K SRR T HIANE, BERRA R T

(Gate Descriptor). B[0-1,6-7 P &M aE, 2-3 F SR, 4-5 Fiat L.
78 setup idt:

79 lea ignore int, %edx #t 4 ignore int P RINE (IWFEME) {H=Pedx FA7e
80 movl $0x00080000, %eax #OFIERAT 0x0008 BN eax [16 fiAH
81 movw %dx, %ax /% selector = 0x0008 = cs */

FSE IR 16 17 BN eax IIMK 16 A7 MRS eax 7
B TR TG 4 71 1R

82 movw $0x8E00, %dx /* interrupt gate - dpl=0, present */
83 # I edx ST AR 4 FME.
84 lea _idt, %edi # idt 2P IR AT Ak

85 mov $256, %ecx

86 rp_sidt:

87 movl %eax, (%edi) #OREE R W AT AR AN R

88 movl %edx, 4 (%edi)

89 addl $8, %edi # edi FgmE P I,

90 dec %ecx

91 jne rp sidt

92 lidt idt descr B OB WA TR A AR A E .

,57,

3.5 head. s f&)%

93
94
95
96
97
98
99

100

101

102

103

104

105
106
107

ret

~.
*

setup_ gdt

This routines sets up a new gdt and loads it.

Only two entries are currently built, the same
ones that were built in init.s. The routine

is VERY complicated at two whole lines, so this
rather long comment is certainly needed :-).

This routine will beoverwritten by the page tables.

L S S S S R

*
X

/%
* WERRRIBFFLIN setup_gdt
* XD TREFRE NS RRR AL edt, Mk, M E)E T AR, ShH1
* R ZTPRFHEWT, “dEEM” B2y, LY TR AKMARTO.,
setup gdt:
lgdt gdt descr # oM AR TR T (WAECREL, W 232-23817) .
ret

109 /#

—_
—
S

—
—
(@]

—
—
(o))

—
—
-3

—_
—
co

—
—
©

—_
[\
(e

—_
[N
—_

—_
Do
Do

—
[N}
w

—
[N}
(IS

—
[N}
(@a]

—_
[\
»

—_
[N)
3

—_
[\]
co

[
[\
©

—
w
o

—
wW
—

* I put the kernel page tables right after the page directory,

* using 4 of them to span 16 Mb of physical memory. People with

* more than 16MB will have to expand this.

*/

/# Linus ¥ WAZMWAE IR BHRAE L H k2 J5, AT 4 MRk HE 16 Mb A3 N 17 .

* WMEARA 2T 16 Mb FINAE, AT E/E X HIHTY iz .

*/

BN UURKN 4 Kb 24T, MRS GORINFR 22 4 775, I — AN iU L n] DUAE I 1000 A4S0,
WU ANRIISHE 4 Kb sk s w0 A GO LASHIE 4 Mb I N AT .

DURIAE AN TUHT 0-11 A7AF—28h5 &, WUERIENAET (P AL 0)« BBV R/W AL 1) .
E PSR B (U/S A7 2) « i isdod GERAET) (D A7 6) 5% RITHIAL 12-31 /&
UUHEMh IR, TR B — DA A R) B 4G

.org 0x1000 # MFs 0x1000 A IFAG /255 1 NIk (% 0 JHAR K AF IR H)«
pg0:

.org 0x2000
pgl:

.org 0x3000
pg2:

.org 0x4000
pg3:

.org 0x5000 # € SCT I) N A-ECE AR % 0x5000 AL TT46 .

/%

* tmp floppy area is used by the floppy—driver when DMA cannot

* reach to a buffer-block. It needs to be aligned, so that it isn’t

* on a 64kB border.

*/

/% 4 DMA CHAEAAEAS VIR AREVT IR ZZ PP, NI tmp_floppy area A7k
w PR IR R A A o O HE RN R, IX AR S 5 64KB T .

,58,

3.5 head. s f&)%

*/
132 tmp floppy area:
133 Cfill 1024, 1,0 # JLORE 1024 T, AEI 1A, SHAKUE 0.
134
NI LN AHERAE (pushl) T8 A/init/main. ¢ B PR [HI/EAER .
AT 3 AR AREAE AP, W42 Linus H T7EIAR B2 B IEHLA S H O,
139 AT AFRERAE AL H main. ¢ BP0 R0 R b A BRI, P DA dn 2R
main. ¢ F2JPILAE IS, BRI RNX B RS L6 gk phAT T 25, U RIBEAEIR
140 174 main. c WML AMERR, XHE, 7EWRCE S DAL (setup_paging) Zif)5
PAT ret’ IRIFEA I 20K main, ¢ B2 HbESE HHERE, HF 23HUT main. ¢ BEIP 2T S
135 after_page tables:
136 pushl $0 # These are the parameters to main :-—)
137 pushl $0 # XL main PSS E (35 init/main.) .
138 pushl $0
139 pushl $L6 # return address for main, if it decides to
140 pushl $ main # 7 main Z4IFEFEEAT main N EEER S STV
141 jmp setup_paging # B 198 17
142 16:
143 jmp L6 # main should never return here, but

—
N
+H

just in case, we know what happens

—
($a]

146 /* This is the default interrupt “handler” :-) */
/% R HEEOAR W “EAN7 © %/

147 int_msg:

148 .asciz “Unknown interrupt\n\r” # o TR R (B ZEBAT) 7 .

149 .align 2 # % 4 A7 AN SR N AL .

150 ignore int:

151 pushl %eax

152 pushl %ecx

153 pushl %edx

154 push %ds # XHPFER! ! ds, es, s, gs SFHRE 16 AL AFAEA, (HARSS
RS LL 32 A7 NAR, DR 4 AN AT IO HER A3)

155 push %es

156 push %fs

157 movl $0x10, %eax # EBUEEEFRT (ff ds, es, fs I8 gdt RPHIEIEED .

158 mov %ax, %ds

159 mov %ax, %es

160 mov %ax, %fs

161 pushl $int msg # A printk REINSEFRE Gl Afk.

162 call printk # ZPREAE /kernel /printk. ¢ H.
7 printk’ & printk i E R AR RV

163 popl %eax

164 pop %fs

165 pop %es

166 pop %ds

167 popl %edx

168 popl %ecx

169 popl %eax

170 iret # FRIRGR P AT B ARG CPU braf 25 A7 (32 7)) fH st o

171

172

173 /*

174 * Setup paging

,59,

3.5 head. s f&)%

—
-~
()]

—
-3
»

—
-2
-3

—
-3
co

—
-3
el

[
o
o

[
co
—_

—_
co
[N

—
co
w

—
co
(IS

—
o
(@a]

—_
o
»

—_
co
3

—_
o
co

—_
co
e

—
Ne)
(e}

—
©
—_

—_
O
[N

—
O
w

—
e
(IS

KX K K X FK K K K X K K X K K X K K X ¥ K

—
O
(Sa]

—
O
>

203
204
205
206

This routine sets up paging by setting the page bit
in cr0. The page tables are set up, identity—-mapping
the first 16MB. The pager assumes that no illegal
addresses are produced (ie >4Mb on a 4Mb machine).

NOTE! Although all physical memory should be identity
mapped by this routine, only the kernel page functions
use the >IMb addresses directly. All “normal” functions
use just the lower IMb, or the local data space, which
will be mapped to some other place — mm keeps track of
that.

For those with more memory than 16 Mb — tough luck. I’ ve
not got it, why should you :-) The source is here. Change
it. (Seriously - it shouldn’t be too difficult. Mostly
change some constants etc. I left it at 16Mb, as my machine
even cannot be extended past that (ok, but it was cheap :-)
I’ ve tried to show which constants to change by having

some kind of marker at them (search for “16Mb”), but I
won’ t guarantee that’s all :—()

*
~

/%
IXANFRE I o 15 R A A7 4% er0 ARG (PG A7 31) KIS s WAZ 2 TUAL BRI BE,
FEBECE SN TURTA N A, LUEZEMET 16 MB OB N A . 70 U8B e A2 AL ARV
otk st (B RIAE AT AMb (IHLAS B & KT 4Mb [AE stk) .
R RE A D BRI N % H XS R R AT I A, P P R O R L R
BEEAHD>IMb (bbb, P “—M” sREUE AT IMb bk 8], B A R g
2], kb o R S) L — 2y 25— mm (WA EERE) 2 B L
XTI 2T 16Mb WAFII Ak — K T, A, ItAamasfHO. AHmExE,
e AT BN, SEFR b, XIFAKEAER . 0H N T e w5, R EN
16Mb, AN EAT AERARBE XA AR CYR, RPZHRETRNO) .
KOS W E F S r Gk S W B sh iy (8 “16Mb”), (HIEABELRIE/EIX L
* BT T®)
*/
.align 2 # 4% 4 07 SO0 55 N AR UL A
setup paging: # FISEX 5 TWHNAE (1 TWH + 4 TR EF

movl $1024%5, %ecx /* 5 pages — pg dir+4 page tables *x/

xorl %eax, %eax

xorl %edi, %edi /* pg dir is at 0x000 */

T H s 0x000 HuhkJF46 .

*
*
*
*
*
*
*
*
*
*

cld;rep;stosl
ORI 4 AJBE T H R, AT 4 AN TURPT DU TR R E 4 T
JUH SIS 5 iR I g — 4, 4 AT 13, 200 B 113 47 R .
“$pg0+7” F£7r: 0x00001007, &5 HgR P 1 1.
A 1 ANTURFTERHEE = 0x00001007 & OxEEFFFO00 = 0x1000;
5 1A TCRIYB MRS = 0x00001007 & 0x00000fFf = 0x07, F/RZLIAEAE. M AILE .,

movl $pg0+7, pg dir /* set present bit/user r/w */
movl $pgl+7, pg dir+d /% ” */
movl $pg2+7, pg dir+8 /% ” */
movl $pg3+7, pg dir+l2 /% ” */

ORI 6 4TIHE 4 MR P AN E, A 4 (JTFR) %1024 (/71 4£) =4096 1 (0 - Oxfff),
LRI RERL AT B N AE 4096%4Kb = 16Mb.

,60,

3.5 head. s f&)%

BRI N A AR TS B N AE L + TR XN T
AR R NG — N IR G — WU R EIR P S . — AN IR B e — e iR
#OALE R 1023%4 = 4092, PR ER G — UL B E DA Bl e $pg3+4092.
207 movl $pg3+4092, %edi # edidf)an— ARG T,
208 movl $0xfff007, %eax /% 16Mb — 4096 + 7 (r/w user,p) */
B 1 TIOR3 P A DL T A R E 2 0xE££000,
o FJEtkbra& 7, BN 0xf££007.

209 std b I IGLERL edi (K (4 FH) .
210 1 stosl /% fill pages backwards — more efficient :—) */
211 subl $0x1000, %eax # BREEL I, YR AR 0x1000.
212 jge 1b # RN 0 UL RS T .

OWE UL H RIENE R AR o3 IOME, FRIMTTH K.
213 xorl %eax, %eax /* pg dir is at 0x0000 */ # UL HEFELE 0x0000 4b.
214 movl %eax, %cr3 /% cr3 — page directory start */

WE B TR Cer0) PG Anids, A7 31)

215 movl %cr0, %eax

216 orl $0x80000000, %eax # 5 b PG Arik.

217 mov] %eax, %cr0 /% set paging (PG) bit */

218 ret /* this also flushes prefetch—queue */

AR GUAR R AR S 5 BEORAL I e A 48 2 BB UG 2 BAS1, X LI 2R 454 ret,
#OAZIR PR B S — MERE R B main REPROHLAESR, JFITARIE4T/init/main. ¢ 2P,
AR RIITIES R T .

219

220 .align 2 # 4% 4 A7 NS N A bk B

221 .word 0

222 idt_descr: BRIHPIAT R 1idt 5210 6 T fEde: KR, Skdk.
223 .word 256%8-1 # idt contains 256 entries

224 .long idt

225 .align 2

226 .word 0

227 gdt_descr: # OFHMAT S 1gdt FRAM 6 FAEefEd: K, Stk
228 .word 256%8-1 # so does gdt (not that that’s any

229 .long gdt # magic number, but it works for me :°)

230

231 .align 3 # 1% 8 Ay AN SF WA bk B

232 _idt: .fill 256,8,0 # idt is uninitialized # 256 Wi, £FIi 8 F7y, 1H 0.
233

AR, A4 BRI CRAD AREBEART . BB . RABAIAT, Hf
RGBHIATT linux BAIRMAL. JEIETE T 252 WA, T BCE T Q8T 55 1)

R IR T (LDT) X B AT 55 IR A5 B TSS AT o

(0-nul, l-cs, 2-ds, 3-sys, 4-TSS0, 5-LDTO, 6-TSS1, 7-LDT1, 8-TSS2 etc...)

234 gdt: . quad 0x0000000000000000 /% NULL descriptor */

235 . quad 0x00¢09a0000000fff /% 16Mb */ # fRISEBHER KK E 16M.
236 . quad 0x00¢0920000000fff /% 16Mb */ # H¥s B KL 16M.
237 .quad 0x0000000000000000 /% TEMPORARY - don’ t use */

238 Cfill 252,8,0 /% space for LDT s and TSS s etc */

353 HEEER
3.5.3.1 EFPITE REIAEMIE

head.s FE/FPATE R G, CLIEGE T WAL H XA TR WS, R BEE T WAZSE bR EH
Wi FF 2% idt FI4 /b A7 gdt. S3AMNE B IR TFRE T 1IKB 5 HIZE X . BEH) system FRbk
TEAE T RVEAI S L 3.5 T

,61,

3.5 head. s f&f¥

Lib BLHRH N

s BT

mm AR
kernel FEERARHT
main. ¢ B2/ P
(" [BrRttiaTiE edt (2K)

TP IA TR idt (2k) system f5He
head. s #5305
ALK (1k)
‘ 0x5000
head. s 05 < WA7 T3 pg3 (4k) 0i4000
WA ITK pg2 (4k) 0x3000
W7 013K pgl (4k) 0x2000
V‘]ﬁg* p0U) 7 11000
N IEEEETIRN P,

B 3.5 system RRFARFHHRGTEE

3.5.3.2 Intel 32 RI{RIPIZITHLE

FRARX BCRE P (1) OB 2 S0IE T f# Intel 386 32 £ LRA A [1MIS AT HLH, 24k DL R AR FE PP b
. 4T 5 8086 CPU 7%, 80x86 MIRF il A A A%, 24 CPU IBATAERY I, it
SRR 1 Bl 1 R B BB FF B, e B 2 AR A I e — R R AE IR AT
R wEE A . 10 SRR 1 3R 1 S B W CRAPAE IR PR ZF a8, A IR FF 3R 25 A7 4% gdtrs
HT T AR R A A7 8% idtr, INAX LER Z A7 AU I & 454 Igdt 2K lidt.

CPU fESA 1T 7 aU, B ag A R BCE — A Bethlik Cbilor 0x9000), 1 e 78 1 B P 1T LA
Sk 64KB I A7 . H9HE AR IR IEAT 7 I, B B 25 A7 28 BCE A AN I A7 S AN kA
I AT A IR TR P AN R FF A TR FF R I — M m A & XA 8 TR T & 1%
BrevEshhbg BY JEHERIBLIKE, DA S SRR B I LA AT o [RIE I BT ik 1 8 A
FEIXANBHEHE I E i BATAC TR EL eip IOME. 488, BRI AT HEMSEER L Ar o, IS TR P AT
U AL IR PR LT AR 3 5 A B85 . I =2, 32 AR R T I N AE SRR, St iRy
F P BRI TR AT DU BRI

EEXEANRIGAE R 510, SR FF R0 = Fh: &RMARFR (GDT). HWHiRfFEL (DT) FlJsdiit
52 (LDT). 4 CPU BT #ER, H—iZ) GDT A1 IDT 7 ul L aefH—, 2l h % f74% GDTR
I IDTR R eMIf#RIENE . R LA 0-8191 4, HIAEhEH 457 LDTR %8s N e E, A
GDT Hr ARk (1),) LDT W2t GDT iRk Ig € o (H A — I 2 EAE KA H
AR TGS e — O T RAMTS GIERE) A LDT. 1817, R LUMER GDT 1
FEIRTF UL LU TS5 16 LDT SR IR T o

PR T L IDT 458 5 GDT 28480, £F Linux WAL & IEA7 T GDT i . 554 256 i 8

FHRIRRTT . (HEMRFFIH NS GDT MAR, HArcE AN P Wt fE I mfE (0-1, 6-7
) FTARBE AR (2-3 7)) Al—d8hRE (45 T4,
I 3.6 A& Linux WAZ T FH R T RAE N AA R R B B, BMTSAE GDT H iy I AN IR 17
I, GDT KH) LDTO #idfF e 5 —MT4 (R R fR s R RidfF, TSSO /&% — M5
fESIRASBE (TSS) MRS, 44 LDT & = AMIARF, Hps—AAH, AR5 B H
REF, 5 = AN EAT S HE BOMHERR B HEATT « 24 DS Bear A7 as h 2 45— MESS I BE BOk B A7 I, DS:ESI
RF)12 AT 45 £ B P A2

,62,

3.6 Ak/G;

[FFFFFFFF
I _ DS: BRK
Bl B
Hedhi 15
DS:0 DS:EST
e
eE— (AR BB 7T JRIEB IR R LDTO
Skt
I I
TSSn HEATF |)
LDTn iR 4%
TSS2 IR AT
LDT2 iR 4%
TSS1 k5 A SRR GDT
LDT1 i 4 3t 256 NIRRT
TSSO ik 7%
LDTO iR 4%
RGBT R
P AZ H s B At iR 77
ARG B 3R 4

B FF (NULL)

GDTR 7 {74

|
 I— J 00000000

& 3.6 Linux AZERBIRFTFRIMTER.

3.6 RE/NE

7E5 1 3 INEFEF bootsect.s 3= ZH% setup.s AAAL AN system B Ing 2 Py 77, Horb system BEb (1) B AL
4 head.s fURY . 7E4E H OB sh B HHE 0x90000 AbHK setup.s ARG 5] 0x90200 4b i, WrkshATALAL
457 setup FEf¥ .

setup A2/ 1 EAEH 2R H ROM BIOS [TR PSRBT LR () — S8 AR K, FEAR-A7AE 0x90000 JT
GHINAEERR, USR] . [RINHE system BEHEE N R S)E|HF kL 0x00000 JT4A4L, X, system
H[F) head.s fRHS 5k ALAE 0x00000 JFURAL T o ARG IR IR RIL b B HGATF R AT frdeh, JilkAT 32 47
PRI R IS AT R eSS . B2 ToRx b bl s b T Sk B, B n B BN A 6% 745 CRO
FBkEE £ system EH head.s fAASIFURAL, i CPU BN 32 A7 Ry 4 FigfT.

Head.s fRH5 1) 3 ZAE FH 2 YD PG R Wi R FF R 11 256 I T3GIA T, A A20 Huhkek @15 44T
TF, MR ARG T A ELLS . IRIEVIEN AT SR, WA DU BRI & TAE. e
Bk 2 system BEELH IRATEEALFET init.c FRARSPAT

NI B Y A VRN AIA initmain.c FEREIITHRERIE .

,63,

4.1 #id

AT WIIRLEEF(init)
4.1 R

7E P AZIEARTS) init/ H s KA —A main.c S0 REG/EHATSE boot/ H 36) head.s F2 17 i mlt 25 K5
ITRAZES main.co %R FEARAK, (HEHE T WY A TAE. PRIAE B 2R 3 i AR A e 5 2
SRR 2 HE R TP IR 5 . R RE e S H X R BT R, TR AR SEIX 55 N 28 o RN 1% 56
Linux WAZAT T KEUN T fid.

MIX—FETFUf, BATEEACK 1) C FEPARD, P i BT — 2 1) C 5 Al mlf—4AZ
7% 453872 Brian W. Kernighan FiI Dennis M. Ritchie i (1) (C F&/7P it 5), AHZA S 1L S THREH FI%k
U BEfR, T LA SRS C ¥ 5 I OCHE

FEERE C S REFI, O T SR 5T MR, AT e Bk A I HR . A7 R
VEREI B NR A 5 PR R R S o X TR A& RS (h), SUPEREEES SCfieRe, RARTE
AR N AR AE T REAR N SR ST 2T

4.2 main.c &JF

4.2.1 ThEEfEIR

main.c F2T 5 6 RI setup.s B HUAHI 240 2 500 B R AR HORA SO 465 LA S — 6 P 17 4 JR A it .
e Py (E AR I T R AR TG HE . BRI 1 P 1 A R R g o G X) A7 A o SRS
5 ST R (RAMDISK), JUIE W AEKEE b . 5 0 1 RO 50 2 T 4.1 s

WIZFEY rEGET | AU FENFFIX

E4. 1 REPAEFENENSTER.

B, il G o I BN B A AT ROM BIOS & FHIIHS > o s 22 v DX AL T A A5 R B 45 i
AR T, U1K (1024) 77504 — AN AR o 5 YAF DI AL A2 i AL B ER mm i i
7 GOHLTIREAT B B L, BL 4K 508 — DA TURAT . AR P il LA i vy 1) i G ok b i Bl (R
ZOE L mm A REAEH] S BRI 1 A7 UL .

R, WRZIEAT BTy T R ERD AR AR . BAEIERFTT SRkt FAT i A tty, B N OIS
— MG (task 00 R A IR TAE TS Ot BCE W A ViR, TTR T, 78RBSy an i TREF I
IR IREPR R R AL L, WRSHER A N LT, AU o8, R85~ — Mate i .
FEAT LCREAR 2 o AR EERI S B B S T

FEFEANWIZSE VIS, WA PATEI# 2] 7 P B, R CPU M O $pRU DI 8 T 256 3 4F
WK RIG RS —VGR I G dgeFE pk £ fork(), BN H—ANH TH84T initQ 0 7.

EZRRE (155 T RGKIBITHEHIGRET .. WREEI IRy, WHEA AR —AFfE, HT
1247 shell F#2J¥/bin/sh. #51% FREFEIR M, SCHEFRIR[A], WISCHEFEHE N —/NIEAEIR Y, RS Rl T 1ERE, Jf
FE ST R PR AT shell #2)7/bin/sh, i SCBEFE Ak 225545 o

,65,

4.2 main. c FE/F

XFF Linux R, FraESHEAE M AT, WIRIRZ RENIRE, i shell F2fr. MZ1 3R

422 REGERE

HF 4.1 linux/init/main. c F£J%

|00 | [O |1 W [DO [

BlelzlmlzlaElEIEIElS i

3=
DO | —

¥

* Jlinux/init/main. c

*

* (C) 1991 Linus Torvalds

*/

#define _ LIBRARY // & NP s 2k 7405 € AL unistd. h ") I IRITC G AR RS 4545
#include <unistd.h> // * h &SCHFTEMBONERZE include/, AR H i A H B A+ AL & .

// IFAIE UNIX FIRRUESL SO, W2 Fe T Er H 3%, JFH G 54641 .

/] WRHERF S R AG RS @ LT S MRS 5 SO, IR M T S MR 2.

// WnBsE T LIBRARY , MSALHE RG0S M N RIC 4SS syscall0() %%,
#tinclude <time.h> // WFAIZRAISLSCAF, Hidp i B2 ST tm G5 R R — S84 SCI [A] 1) pR B E

VZ
* we need this inline — forking from kernel space will result
* 1in NO COPY ON WRITE (!!!), until an execve is executed. This
* s no problem, but for the stack. This is handled by not letting
* main() use the stack at all after fork(). Thus, no function
* calls — which means inline code for fork too, as otherwise we
* would use the stack upon exit from ’fork()’.
*
* Actually only pause and fork are needed inline, so that there
* won’t be any messing with the stack from main(), but we define
* some others too.
*/
/%
* PRATTHEE N HIX L) HikiER) — AP AZ S A 2 (Forking) #5350 A S B &2) (COPY ON WRITED ! !
* LB UT execve AR o XNTHERR AT BE T K 0] @, A1) 7 V52 AE fork O T HH 2 JEANik main O 4
* AT HERG . AN REG R B — XMW fork B AR AACES, S IFRATEM fork O IBH
kN B P MERR T .
* SR B pause Al fork B N XT3, BACRIEA main O thANS FelLMER:, (HZ2IRATIFI N 8
w E ST HE R
*/
static inline _syscall0(int, fork) // 7 unistd. h PN ARG . BURR AT 9 (1) 78 200
// Linux [RGP FHT 0x80, % Wi T 43 3 Ge i i 11
// ANHo i%43ER) bR & int fork) GIEMHE RS .
// syscall0 ZFRH G I 0 Ron LS, 1 KR 1 DS
static inline _syscallO(int, pause) // int pause O R : e EMPIT, HR
/) WE M5 T,

static inline _syscalll(int, setup, void *, BIOS) // int setup(void * BIOS) Z& A, XWHT
// linux ¥tk AAEXAFEF R BRAD ©

static inline syscallO(int, sync) // int sync QO REPH: FH MRS,

ttinclude <linux/tty.h> /)ty Skaeft, X THK tty io, FATHE T THIZSE. B

#tinclude <linux/sched.h> // WWEERETLICMFE, & LTRSS E5H) task struct. 2 1 MIHATS
/) BIEHE . AT e DL I e A R IR R S 50 B R
// AN G BT

,66,

4.2 main. ¢ F&)%

58
59
60
61
62
63
64
65
66
67

68
69
70
71
72

#include <linux/head.h> // head k30, & X T BHERTFRIM L5, AL ERSTE 2.
#tinclude <asm/system.h> // REGXMF. LM e X T2 0% B ii& g
/) FEIRFF /W E RN S G TR

#include <asm/io.h> // 1o 3k3CAF. PLZERIIR ANIC Gt e e XA 1o v TR IR pR 2L

#include <stddef.h> /) RAEE XK. s LT NULL, offsetof (TYPE, MEMBER) .

#include <stdarg.h> /) bRMESECR . DORRTEAGE R RS H IR . B T -A
// W (va list) fl= % (va_start, va arg fll va_end), vsprintf.
// vprintf. vfprintf,

#tinclude <unistd.h>

#include <fcntl.h> /) SO ISR SO . T SO S R R R I B4) AT 1 e e
#tinclude <sys/types.h> /) RIS, & LT AR ARG IR,

#include <linux/fs.h> [/ XAERGL A B SR G (file, buffer _head, m_inode 55) .

static char printbuf[1024]; // EF&STFRFHEAH.

extern int vsprintf(); // AR B /R P (FF kernel/vsprintf.c, 924T) .
extern void init(void); // EUFIE, ¥IiHtL (£ 168 17T) .

extern void blk dev_init(void); // SRE&WIH FFEF (kernel/blk drv/11 rw blk.c, 157 47)
extern void chr dev init(void); // Ffix&WIEN (kernel/chr drv/tty io.c, 3474T)
extern void hd init(void); // T IURLFRE? (kernel/blk drv/hd.c, 343 47)
extern void floppy init(void); // ®EXKWIUEALFEF (kernel/blk drv/floppy.c, 457 4T)

: extern void mem_init(long start, long end); // WAFEEEHIMAML (mm/memory. c, 399 47)
extern long rd init(long mem start, int length); //mEHIEHIMEIL (kernel/blk drv/ramdisk. c, 52)

extern long kernel mktime(struct tm * tm); // ZESNZEIE (BB .

53 extern long startup time; // WHZEZHITE CFHURED (B .

J*

* This Is set up by the setup-routine at boot-time

*/
/%

* DU X SEHA 2l setup. s BEPAES I SRR ER (WA 2 3 2.3.1 iR 2. D .

*/
#idefine EXT MEM K (*(unsigned short *)0x90002) // W LU TENAE RN (KB &

#tdefine DRIVE INFO (*(struct drive info *)0x90080) // Wi#t S KLHE,
#define ORIG ROOT DEV (¥(unsigned short *)0x901FC) // AR XU RLIEKKE.

/¥

* Yeah, yeah, it’s ugly, but I cannot find how to do this correctly

* and this seems to work. I anybody has more info on the real-time

* clock I'd be interested Most of this was trial and error, and some

* bios—listing reading. Urghh.

*/

/%

* SR, JEW, N BRETIRZESD, (HEAKIE T I EAHSEEL, i B R e egiE . Wikl
* T SEIT B E 2 M BRE, AP FRAR B R . X SEEE R HOR 1, DLEFE T 2 bios FEJF, W!
*/

#define CMOS READ (addr) ({ \ // XBZZitHL CMOS SEWS 805 E o

outb p(0x80]|addr, 0x70) ; \ // 0x70 Hi 115, 0x80|addr &L H K] CMOS Py A7-Huhk .
inb p(0x71); \ // 0x71 & 15,

1)

,67,

4.2 main. ¢ F&)%

73
74 #define BCD _TO BIN(val) ((val)=((val)&15) + ((val)>>4)%10) // ¥ BCD Rh#E e pli k7

75

76 static void time init(void) // % FFEFHL CMOS I h, JHi B IFHLAS M >startup_time (F2) .

77 |

78 struct tm time;

79

80 do {

81 time. tm sec = CMOS_READ(0) ; // Z VLG CMOS WAFHI#
82 time. tm min = CMOS READ(2) ;

83 time. tm_hour = CMOS READ (4) ;

84 time. tm mday = CMOS READ (7) ;

85 time. tm_mon = CMOS READ(8) ;

86 time. tm_year = CMOS READ (9) ;

87 } while (time.tm sec !'= CMOS READ(0)) ;

88 BCD_TO BIN(time. tm sec);

89 BCD_TO BIN(time. tm min) ;

90 BCD_TO BIN(time. tm hour) ;

91 BCD TO BIN(time. tm mday) ;

92 BCD_TO BIN(time. tm mon) ;

93 BCD TO BIN(time. tm year) ;

94 time. tm mon——;

95 startup time = kernel mktime (&time) ;

96 }

97

98 static long memory end = 0; // BB EAWNAE (40
99 static long buffer memory end = 0; // mEiifgEah X Kuiiit.

100 static long main memory start = 0; // T4 CEH TSI JFEHEALE .

101

102 struct drive info { char dummy[32]; } drive info; // FHTAFBAEESHEME .

103

104 void main(void) /* This really IS void, no error here. */

105 { /* The startup routine assumes (well, ...) this */
/% XHASE void, JEEHT. 11 startup F2F (head. s) At/ XAEAR B o
// Z 0. head. s FEIFER 136 1T HF 4G 1 JLATARHS

106 /*

107 #* Interrupts are still disabled. Do necessary setups, then

108 * enable them

109 #/
/%
s BUIN R T ZE A, e e B TR S BRI S
*/

// N BARHS F TR A7
// WRi%4%'S =PROOT DEV; HiHZEAE A vk =»buffer memory end;
// WL N HF S dmemory end; TEWNAATTLAMAE Pmain memory start;

110 ROOT_DEV = ORIG_ROOT DEV;

111 drive_info = DRIVE INFO;

112 memory end = (1<<20) + (EXT_MEM K<<10); // WAFK/N=1Mb “FH5+5 N A7 (k) %1024 575,
113 memory end &= Oxfffff000; /) BWEAE] 4Kb (100 HINA7E

114 if (memory end > 16%1024%1024) // MR ANAEEE 16Mb, Ul 16Mb T,

115 memory end = 16%1024*%1024;

116 if (memory end > 12%1024%1024) [/ WRNAE>12Mb, ¥ % v X K i =4Mb
117 buffer memory end = 4%1024%1024;

,68,

4.2 main. ¢ F&)%

—_
—
co

—
—
©

—_
[\
o

[
)
—_

[
[\
)

—
[N}
w

—
i~

—
(IS
co

—
[N
e

—
o

—
(Sa]
—

—
(@3]
Do

—
()]
w

—_
(&2
=~

—
1
(@]

—
a1
»

—
S

[
co

else if (memory end > 6%1024%1024) // AR] AE>6Mb, B 22 X R S =2Mb
buffer memory end = 2%1024%1024;

else
buffer memory end = 1%1024%1024:// 15 W4 B 2% ip X K im=1Mb

main memory start = buffer memory end; // FEWARERUAN B =221 X Kb ;
gifdef RAMDISK // Wi ST MEfMAL, W3 WAFREkD o

main memory start += rd init(main memory start, RAMDISK*1024) ;
ftendif
// VAR R NAZIEAT B A 7 T IATGa A A o Bl B i R T AR PR NIE 25, SEAER
[/ ANTET, eI &N AMIHRAIE — XELK 2RO,

mem init(main memory start, memory end) ;

trap init(); // BEBT) Cfgp e &) #Iihik. (kernel/traps.c, 18147)
blk dev init(); // HEKHWLHL. (kernel/blk dev/11 rw blk.c, 157 47)
chr dev init(); // FHFELEVIGENL. (kernel/chr dev/tty io.c, 347 47)
tty init(Q; // tty #lEEtk. (kernel/chr dev/tty io.c, 1054T)
time init(); /) EEIFHLE SN R > startup time (W 76 47) .

sched init(): // AERERIGA O 74845 0 it tr, 1dtr) (kernel/sched.c, 385)
buffer init(buffer memory end); // G PV, ENFBELS., (fs/buffer.c, 348)

hd init(); // WEEAIURAL . (kernel/blk dev/hd.c, 343 47)
floppy init(O; // BIKVILAL. (kernel/blk_dev/floppy.c, 457 1T)
stiQ; [/ FTERIA ARG5S T, JF R .

// RIS R A AR PR B S, R TR Rl A D1 B4 0,
move to user mode(): // BEIH P #X., (include/asm/system. h, % 147)
if (Ifork() { /* we count on this going ok %/
initQ;

}
J*
* NOTE!! For any other task ’pause()’ would mean we have to get a
* signal to awaken, but task0 is the sole exception (see ’schedule()’)
* as task 0 gets activated at every idle moment (when no other tasks
* can run). For task0 ’pause()’ just means we go check if some other
* task can run, and if not we return here.
*/
/% R ATTARMIE TS, pause O B EMRE BA VLSRR — MG 54 &R
* PG T A, HATS 0 (task0) JEME—RIESMEN (S schedule ()’) , BTS04
k ATA PRI) FLAR S s CHEA e RSBt , BIXFAES 0’ pause O RS
* TAVRFERE G S LIRS T LUE T, WREA MR 20X 8, —EIGHIAT pause) o
*/
for(;;) pause();
}

static int printf(const char *fmt, ...)
[/ PR AAE B IR BIRR R R & stdout (1), X EFREEHR IR, S0+t $5 2 5K
/) RHIRE A, S ISR C 1 . ZFARPIEL 2 vsprint £ WAl 4l FH i — AN+
[/ RS vsprintf O B AL Z AT B IRON printbuf Z2pfIX, SRJ5 A write O B2 TIX [P %
// R EIRRHE R A (1-—stdout)
{

va list args;

int 1i;

va start(args, fmt);
write (1, printbuf, i=vsprintf (printbuf, fmt, args));
va_end(args) ;

,69,

4.2 main. ¢ F&)%

15 return 1i;
160 }

{ 7/bin/sh”, NULL }; // WHBITFEFI S 80077F B 504
{ “HOME=/", NULL }; // VAHPATEEF RIS 7457 B4 .

162 static char * argv rcl]
163 static char * envp rc[]

165 static char * argv[] = { “~/bin/sh”,NULL }; // [Al k.
166 static char * envp[]l = { “HOME=/usr/root”, NULL };

167

168 void init(void)
169

170 int pid, i;
171

[/ SEHAEAE Z A HE 43 X R AT B IFH G R AU R R S R £
[/ AREBURAE 25 4T B8 P, XN RO sys setup(), fE kernel/blk drv/hd.c, 71 4T
17 setup ((void *) &drive info);
173 (void) open("/dev/tty0”,0 RDWR, 0); // HBEE U577 XITH WA “/dev/tty0” ,
// 3K B N 2 6
// RIBIFIAIRES 0 — stdin FRUERIA B o

174 (void) dup(0); // ZHIEING, PR 1S —— stdout FrifEfrH R &

175 (void) dup(0); // ARG, PRI 2 5 —— stderr FrifEHHAS T H A

176 printf (“%d buffers = %d bytes buffer space\n|r’, NR BUFFERS,

177 NR_BUFFERS*BLOCK SIZE); // FTENZRyh X HACR R 71540, B 1024 775,

178 printf (Free mem: %d bytes\n|r”, memory end-main memory start): //ZWRNIEFTE.

// Rl fork O FIFEIEE—ASTHERE (TAESS) « X TR B THERE, fork O KfiR R 0 {4,
// 3T R (QRERE) KR [P FREFE O RERE S . FTLA 180-184 A/ FHEFEHATHI N 7% &% FHERE
// KT AR 0(stdin), LAHB T I/ ete/re XM, FE#4T/bin/sh BEFE, Frai S 50f
// AR Rl argv_re Fl envp re UALG . S ILE HIMHGIA .

179 if (! (pid=fork())) {

180 close(0);

181 if (open(”/etc/re”,0_RDONLY, 0))

182 _exit(1); // WRATIFSCARE R, WAR HY (/1ib/ exit. ¢, 10).
183 execve ("/bin/sh”, argv rc,envp rc); // FHAN/bin/sh FEFIHFHAT .

184 _exit(2); // #F execve O BT RIMIE H (TS 2, “SCHFEH EAAFAE”) o
185 }

// FHHESHEFAT IO A, wait O RS 6T IEREE, LRI TR R S (bid) .
/] BRI R SRR £ IR LE AT & AT OB AR A B B R . B0 wai e O R B
/) ETHRE, MRS,

186 if (pid>0)

187 while (pid != wait(&i))

188 /* nothing +/.
/) R PATEIX B, BN I PR BT E AR B T . NIRRT R,
// WA, MR “YHRARE O TR R B IR SR AT o XTI Qi g i 1 R OGP P
// VAHTR ISt B I A) 40 (stdin, stdout, stderr), Fr@l@d— itk EHEH S, RGEHIT
// /dev/tty0 1Bk stdin, FFEHIAK stdout F stderr. FIRPUT REMREFLT/bin/she (HIXRKFAT BT
/) ESE AR AT & (W L 165-167 17) o SR QR RIET wait () 245, R
/) IR AT T AT, IESR R b B os MRS R PR pid 4k T isAT, RMISE 17, RS
[/ AREETEUT L, JBRG R BEIRER

189 while (1) {

190 if ((pid=fork())<0) {

191 printf (“Fork failed in init\r\n”);

192 continue;

193 }

,70,

4.2 main. ¢ F&)%

194 if (Ipid) {

195 close(0) ;close(1) ;close(2);

196 setsid();

197 (void) open(”/dev/tty0”,0_RDWR, 0) ;
198 (void) dup(0);

199 (void) dup(0);

200 _exit(execve(”/bin/sh”, argv, envp)) ;
201 }

202 while (1)

203 if (pid == wait(&i))

204 break;

205 printf (“\nlrchild %d died with code %04x\n|r”, pid, i) ;
206 sync () ;

207 }

208 _exit(0); /* NOTE! _exit, not exit() */

209 }

210

423 HEFER
4.23.1CMOS 58

PC #LI¥) CMOS(complementary metal oxide semiconductor b4 JE S Ak 4>1- S AA) A 7752 b S 1 Hia it
HEHLMY 64 B 128 77T RAM WAFEEL, JE RGBS 04> BLeHLaIEH R NI &= .

% 64 7151 CMOS B 5E7E IBM PC-XT Mlas EH T ORAARM BRI HIE B i X asfE BAUH 2 14 7
W, FIRMFA R e R L E A T

CMOS [t hk 2% [) J2& A FE A Hu bk 2% 6] 2 A o DRI AL Fp AN 358 T AT (AR S o 8 75 4 A ity
70h,71h fFH] IN F1 OUT $54-k il o & 1 EHER e AS AL & 1717, 1 5E TR EEH OUT [mjui [70h Kik
FRE AR, ARIGMH IN F54 A 71h 5 ISR 2 17 1 s 8 .

B (AT TOVB ARSI K 7 kb s b 7> 80h & %A B« A R JIEH 1) CMOS A 77 45
AT B 128 75, RUkEl I 80h HIHRAE AT M VERI . Z T ASAT IR FEAOBRAE S IR R 240 Linus
FkBZ 479 CMOS JrTH %k, CMOS HristaiR H 3 i s bkl 2 ith 2 0 286 ok, B VFEAbsk
Ko AS kb b 80h (O HadE T He) Jo IEMF IS T BT IEA R 4E 5, I RS bt sl
HTIXPADLEREAE . AN 1.0 IRAZ G, & LB T (W2 W, 1.0 iR W A% 27 drivers/block/hd.c
55 42 AT IARES) .

FHE CMOS WA B — ik ik .

F4.1 CMOS 64 FHEEE xR

T A

0x00 YRR (SERER)

0x01 HREFME

0x02 YRR (SERA

0x03 RSy P E

0x04 YRR (SE)
0x05 RN NHE

0x06 —JAEET R (SN
0x07 — AR HIE (L)
0x08 YT (S

0x09 YHTEA (SEI)

0x0a RTC JR&Z 74 A

0x0b RTC R&EF /4 B

,71,

4.2 main. c &%

0x0c RTC JR&Ffras C
0x0d RTC R&Z/r# D
0x0e POST £ Wrika& 77
OxOf HEHUR A
0x10 T B IR B s 2 1Y
0x11 Nt

0x12 D mIE et
0x13 i B

0x14 W&

0x15 FEARNAE (IRF-T)
0x16 BEARNAE (7R T)
0x17 T ENAE (KTT)
0x18 PN ()
0x19-0x2d N

0x2e A (fI719)
ox2f REEGAN (5 7T)
0x30 AMb LA E (R A (I5°15)
0x31 IMb BL EF B NAE (1)
0x32 i P ALt AE
0x33 7 Bbri
10x34-0x3f R

4.2.3.2 A fork() I iz

fork j&— ARGV H R 1 Z RGO H SRS AR, JEESRER P A — A 5 R BERE (B AR SRS
JUT5E e —FERTEER I, HEHAT RS, (HZcpridtfe OX Bgiicoh 73R #iG B S 25 fEk
BS54

FEALHERE T, R fork (iR A1) 2 TR MRS YIS PID, TfiE T-HERET fork()IR A 462 0 1, iX
FE, BRI S AE R —FR P 3T, HOTFGXIT, & BHPAT H CRIBAR . an i fork() 1R H 0%,
MR BN 0 BIME. dinElE 4.2 Fios.

Pd=0 i

- pid =0
hid=fork() ' NG)

E4. 2 A fork () tIE FHiHIE

init F£ 7B JE H fork ()i A B3R [FIE KX 3 RN AT AN R AR B o AR H 2 179 A1 194 472 13
TR AT I 46 T BRI AT CRIH execve() RGHHHAT I E R, XHPATHIRZ shd, % 186
F1 202 47 A HEREPAT (AL B

,72,

4.3 KwE/NG

4.3 E/NG

X011 R R, It B AT el A, HEERSCHE RS R —A MINIX U RS, H I HZE
8 A lete/re. /bin/sh. [dev/* DL K —46 H k/etc/. /dev/. [/bin/. /home/. /home/root/ it] LA I— N1
A LR SCE R 48, il Linux 247K .

MIX BLIFLE, W e ibd s, nf LUK inite REPAE N — & R T, AT Bk
LR A TS EENLHIAS T, SO S8 P E 10 2 N AEEF H IR) 75 o

T BELGIRNUR M 3 LR &2 N2, RS0) A SRS N BE PR 20 32 (7 R B AT IR ML,
VEA B — R s A BT L R N 2%, B 2% Intel 80x86 MG <P EE, R HX R BT HLHIYIR
FEIGRE, ARG PRk EL i,

T B %

a1 SR e 2 G IR P 5 B L, IS A linux RN WA RN % O T RSN T
fifts (HEEATREL S HIXFER M. “AEAERR T — RYVEREZ G, RGOS W] 73 s 471X Le g A2 5l i an
[I FE IR L RIS AT e ?) “Fe7 JEEREEERIE? 7. BRIFAR S WL ZM AT sched.c
&5 T AR 2 pR 5k schedule(V RN system _call.s o fR)E ISFIH e I R timer_interrupt SK4E 0 . A% E
10 =R — kI B, R IZ R W R, IR do_timer() BR EORY 2 T BERE) 24 BT A TR ok
e AR 2R3

T R AE AT IR el ARUF 1R S YR N B 2 I I T AR, B ARG A Tl
sleep_on()ZSe& i) e H schedule() &%, K CPU FAF A B RS AT A IS RE . 2T R8T
K SISATHN R, W5E4H schedule()RRH5 T A7 BERE (1 M BPIRS T e E « KT —HAE ISR E
PIRERE, A Bhrb sk R e s AT I) S e, RATE do_timer() P AT ERE D B, 1%
HEFE) CPU A AU S AN BE 12, kg5l e R A H

B R £ schedule() R b Wit FE R R — & e —.

,73,

H5E A (kernel)

5.1 it

linux/kernel/ H 5%~ 24035 10 4> C i 5 SCAHFERT 2 NGl 75 S0 LA —A kernel T 9B SO 7 22
B S Makefile. WAIEE 5.1 Pras. Hoh =41 H s P AR B (PP fe e adb AT . AR %
XX 13 MR SCAFREAT RS o B SETRAD T A FE P I SE AR DD R EA T WSS P S AR A4, A — TF At
X 12 AT D REFNEA 1 M AR IO R R A ARBTG5 8 — AT PRGN i

o

5K 5.1 linux/kernel/BHF

A4 KA BJEBHEE (GMT) #E8
E:! blk drv/ 1991-12-08 14:09:29
E:! chr drv/ 1991-12-08 18:36:09
E:l math/ 1991-12-08 14:09:58
% Makefile 3309 bytes 1991-12-02 03:21:37 m
=] asm. s 2335 bytes 1991-11-18 00:30:28 m
B exit.c 4175 bytes 1991-12-07 15:47:55 m
63 fork.c 3693 bytes 1991-11-25 15:11:09 m

T mktime. c 1461 bytes 1991-10-02 14:16:29 m

panic.c 448 bytes 1991-10-17 14:22:02 m

printk. c 734 bytes 1991-10-02 14:16:29 m

sched. ¢ 8242 bytes 1991-12-04 19:55:28 m

signal. c 2651 bytes 1991-12-07 15:47:55 m
1 sys.c 3706 bytes 1991-11-25 19:31:13 m
E7] system call.s 5265 bytes 1991-12-04 13:56:34 m
€7 traps.c 4951 bytes 1991-10-30 20:20:40 m
€7 vsprintf.c 4800 bytes 1991-10-02 14:16:29 m

5.1.1 B {ATh ek

ZH S PRI SO AT BE BT LA =38, — RN i) iy ik, —RERSR
W25 AL BERR 7 S, S —F e iR SRl D e St . 2 B 1.5 TATTIAEAR SR X AN 02505 1,
MSEBL S e L IEAT S R4 .
5.1.1.1 i@ h BT AR KR F

T HEAFE AL SO asm.s Al traps.c SCH. asm.s FH TSl AR o R S BT 5 LA) v 08 ARt
B E AR . M traps.c B ISEEL T asm.s (R I AL BRI AR PR T ¢ eRR. S AN LA P kT AL]
TR AE S system_call.s A1 mm/page.s 11528,

,75,

5.1 it

T TR AT LA2» A I R o AR R BT G) o B3> P IBTAE 7 0-255 Z TR — N7 Kb
W XFF BT int0--int31(0x00--0x1f), BEANHIBTIITHAE R Intel [52 ¥ s AR B K, &8 T8 F i,
{5 Intel FRZ R 5. BUMAE T CPU AT HE A IR B S 1 5 RS0y o 3845 34 1T 43 Ay i i (Faw) R B B
(traps) P9 & o ' BT int32--int255 (0x20--Oxff) n LAt H H & & & « fE Linux HR 4 H, N
int32--int47(0x20--0x2f)Xf ¥ T~ 8259A HPITz L5 v &t IR A TP i SR A5 5 IRQO-IRQA5: FHHERE 74
Fo o HA I 2 20 T (system_call) HH 1% & 2 int128(0x80).

FERE IR 25 T WAL BRRR PP 22 11T, CPU 2 B 554 820 12 5 iOME B A P Ik b R P R A
KRS — KA (B 7R AD HEBAHS . CPU ¥ ARRY Bk B4 R IR (R bkl (1) R PR\
bk o 53— BRI A LA 4 1 Hh g 2 80386 K i ER A E T H AT I HERR b, 1A 2 kb A
TR . 4k, CPU I B2 R br & 271728 EFLAGS [N 28 NHER: . I ARG 200 k2 T 284k, Hedn
MWH P RSCE BN R G, CPU b2 AR (1) HEAR B AR I HER AR £ e N P IR 7 1 HEAR o 0T
AR RSL I HER I N i L 5.1 B

JE SS J& SS =
Ji ESP J% ESP N
EFLAGS EFLAGS

CS CS

(a) AN LR LS (b) 7t

B5. 1 %t BT A o A

asm.s RS S B0 Kb Intel £ B4 7 intO--int16 [ALFE, FHAE B T intl7-int31 i Intel 2
I RAVEA GY A o 6 T R g S £ IRQ R K int32-intd7 [16 /N IEFE TS 43 S AE 45 ol
Bl Clnrmy g, SR ARAE e P s« A WIGA A FR b AR EE . Linux 224218 HI B int128(0x80)
(ARG AT kernel/system_call.s Tgh o 8N Wi HoAdE SCARIS RS G Fe £ B — 1 i i i .

AL i 5 R HP TR, CPU B2 A — AN AR A QAT e N HE AR i A T int 8 T int10 - int 14),
DL 5.1 B, e i R W HI EASHE A 1K A A AR 0 4ol 22 Bk HR A RN A At 5 45, DAL, asms
T 7w A m T) A AR AR 2 75 485 5 H B AR 01 0 A T A 3 o (H AR B R R —FE 11

XF ARS8 T DR 1R AR W IR A B R L R B s (81 5.2)

,76,

5.1 it

I A AT 4 A i
AR —> Ak '

rhRTIR [k —> A A

T B A s BN
R B) B A 1 WA L

FHHE N 0x10;

AN C ALPE B % ' W2 CHAS IR
i 0;

i LT NPT L B R VE 3. VA C R

SR AR 1) R W3R (] Bk traps. ¢ TSI, JEA
MR 1) L ARG A

PR MRS e 2 T [2 F C i
P UNE S

Bb.2 BH5RE (. Bk PrsIErhETLERiRiz

5.1.1.2 R MAEEXIEF

Linux =S FH AR IR P9 A 1 D) B A2 ek A T it 0x80 HEAT 1K), %3474 eax HBUR 5. RlIki%
HIT IR RO R - SEILR G0 FH (W AH ST EL 4 system_call.s. fork.c. signal.c. sys.c I exit.c
A

system_call.s £ /5 [/E ISR eE rp IR AL PR R 1Y) asm.s BRI IOAVERT, S5 AhE s i e e N A 58 L 3
B WTEEAT AL, 1y fork.c AT signal.c N R ELUSRARLT traps.c BRIV, ARG WAL C
A PR PR 3. fork.c FE 4R AL C kb3 pk%: find_empty_process()F1 copy_process(). signal.c /7t fit
— AN ERAT RS 5 R B do_signal(), RS A T W AR B RE R . S ANE RS 4 ARG
FH sys_xxx()E& %

sys.c Al exit.c FE/FSLIL T H e —2LE sys xxx() R Ge i H e EL . 1XLE sys_ xxx() R ECAR A& AH Y. R 40 1 H B
U AL EE R 2R, A SR Al L G S S, W sys_execve(); i SiAh—LENH C ESSZEL (il
signal.c 1111 4 N RFE IR ED .

FATT AT AR 3K 26 o 50 1) 17 iy 44 RN IXAE R BRAE 38 Lo ISk (1 rh A B rh R I 1K) C o
5, BARRGHAGIS R @A R, AR R TR 0Ll sys_FF kM RS0 FH iR
BRI 2 RGN AP g %, i, do_signal()eR A b2 BT 22 458 1 FH 0 EEp0A T 1) R 5
i do_hd(). do_execve() & A F Gt % HI) C Ab 2 ek 24 .
51.1.3 HEBRAERERF

IXLEFE P AUFE schedule.c. mktime.c. panic.c. printk.c 1 vsprintf.c.

schedule.c %5 E0 45 N A% R H B4 251 schedule(). sleep_on() 1 wakeup(B, 42 P A% A% 0o i 5 7
J7, TR AT BT D) e B SO R R BATIRZS o mktime.c B35 P AEL 75— A P AZ A FH (1) 1) T B
% mktime(), {XAF init/main.c K. panic.c LS panicORRE HTAE NAZIEAT A R
I 7 H A S R IR L. printk.c AT vsprintf.c J& % o G BSCRIRET, S8 T W% & H Wos s 3L
printk () FH7 45 5 A% A5 HH eR £ vsprintf() .

,77,

5.2 Makefile 3Cfi

5.2 Makefile 344

5.2.1 THEEREIIT

i linux/kernel/ N FEF 1) make BCE SO, AR =ANT HF. Z 04 A 558 — sk
1.2 FEAAHR], ER SRR AT LS53R 1.2 h A R

5.2.2 R

F)FE 5.2 linux/kernel/Makefile 345

#

Makefile for the FREAX-kernel.

#

Note! Dependencies are done automagically by ’make dep’, which also

removes any old dependencies. DON'T put your own dependencies here

unless it’s something special (ie not a .c file)

#

FREAX W% (1) Makefile SCffo

#

R HOBOCRZE N make dep” HBNHHTIY, ‘B4 A3 LR ECRMMSUE S . AZEYRA DK
HOMOC R BIEX L, BRIAERRE NSO (EIAE A ¢ SIFIIE D «

(Linux fHIMKI4% 70 FREAX, J& Kk fip. funet. £i R HE B30 Linux X4 F)

N[O o1 [o DO [—

8

9 AR =gar # GNU [—iEfISCHRAb R T, FH T8 1B BA S A RS SCAE TR O

10 AS =gas # GNU [V 4nRE)F.

11 LD =gld # GNU [fEHRLT.

12 LDFLAGS =-s —x # BE#ERITIAMSE, —s W S P AR A 55 B —x BRI R a5 .
13 CC =gcc # GNU CiBZgmitse.

14 CFLAGS =-Wall -0 —fstrength-reduce —fomit-frame—pointer —fcombine-regs \

15 —finline-functions -mstring—insns —nostdinc —I../include

COMPFREIFIET. —Wall Bonpra FEEEE; —0 AL, PRS- B AT I 18] 5

—fstrength-reduce MEATEIAPATACND, HFRE R E; —fomit-frame—pointer 44 W& IRAFE AL

MMHEZEFREL; —fcombine-regs & IFarfrdy, WD 2RI ; ~finline-functions 747 ff]

SRR R EAA IR N RE P s —mstring—insns Linus H CSEMNMALIETT, BUSA BT

—nostdinc -I../include Al BRI BE AR A0 2 ST, A X B g e H 1 (L. /include)
16 CPP =gcc —E —nostdinc —I../include

CHIACHIEIN. —E HUzAT C BUALS, XTPTA e i C R AT 1A BE 45 A 21 45 J 4t B A v

A ERIE E B S —nostdine —1../include [AHT.

17
R NAE7R make RN 0 A K PTE . ¢ S BEARRL. s TEMFET . R 1 A &
$84U gee SKH] CFLAGS JrHisE B IS C A g o AR TIE it 5 1 (=SD , MBS
A IAAS C SO B FTE AR S . BRI B0 F B AL G 2 e SR 42 02 S C S 44
o LfL el s F8. —o FonHn M SRR s s (3i$@) 2 B3l HbrAH,
SUREEE Mg th, KRR RTE 4 ¢ 3.

18 .c.s:

19 $(CC) $(CFLAGS) \

20 =S —o $*k.s §<

NIRRT . s IEgRRERE SO k. o HFR SR, 22 AT & SEB B E I FAk dn 2
21 .s.o0:

,78,

5.2 Makefile 3Cfi

31
32
33
34

36
37
38
39
40
41

42
43
44
45
416
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

$(AS) —c —o $*.0 $<
.c.o: # 2RBLET, * ¢ X% 0 HiR3OM. AN TIER:.
$(CC) $(CFLAGS) \
-c -0 $*.0 §<
:: OBJS = sched.o system call.o traps.o asm.o fork.o \ # &N HAFX{4ARHE OBJS.
panic. o printk.o vsprintf.o sys.o exit.o \
signal. o mktime. o
kernel.o: $(0BJS) # 1EAT T A OBTS Ja il AT T) iy 2 1E e i H A% kernel. o
$(D) -r —o kernel.o $(0OBJS)
sync
RN FE R TAE . MPAT make clean’ I, SE&HAT 36--40 17 L4, LBRFTAwIE
RIS e’ B SCENRR A, BT A R S ATEAE SO, 3 AN BRI ERAE S .
clean:

rm —f core *.0 *. a tmp make keyboard. s
for i in *.c;do rm —f "basename $$i .c .s;done
(cd chr drv; make clean) # #EA chr drv/H3%; $4T1% H 3% Makefile) clean ¥,
(cd blk drv; make clean)
(cd math; make clean)

RS H AREGIIU A TR 5 SO 2 R S R . AR

AT B g E R F sed b Makefile S0 GXHAE H D) SHTACBE, FrH A MIER Makefile

SR ### Dependencies’ AT HIMTAAT CRIM 51 JFREIAT) 5 HHAERK tmp_make

OGSO (A3 47 IIVERD) o SRJE X kernel/ H 3 RIKEE—AN C SCFAT gee TRALPE#RAE.

M br S VR TUAL B PP A R AN H AR SCAFAH DGR AR, I FOX LSR5 make 572

N FR—ANE A, PACFEFE A make O, gk BT SR AH MR TR R A H B

SO AN B FLAROOC R —— 1 S AL P AT Sk SR AR o HE T 3 5 SR AR S I 2 11)

SCMF tmp_make T, AR BRI I SO EGHT I Makefile S

dep:
sed ' /\#\#\# Dependencies/q < Makefile > tmp make
(for i in *.c:;do echo -n "echo $$i | sed "s,\.c,\.s,” ” ”; \

$(CPP) -M $$i;done) >> tmp make

cp tmp _make Makefile
(cd chr drv; make dep) # % chr drv/H 3 N Makefile SCA-WAERIFERALEE
(cd blk drv; make dep)

#t#t# Dependencies:

exit.s exit.o : exit.c ../include/errno.h ../include/signal.h \
../include/sys/types.h ../include/sys/wait.h .. /include/linux/sched. h \
../include/linux/head. h .. /include/linux/fs.h .. /include/linux/mm. h \
../include/linux/kernel.h ../include/linux/tty.h ../include/termios. h \
../include/asm/segment. h

fork. s fork.o : fork.c ../include/errno.h ../include/linux/sched.h \
../include/linux/head. h .. /include/linux/fs.h ../include/sys/types.h \
../include/linux/mm. h .. /include/signal.h ../include/linux/kernel.h \
../include/asm/segment. h .. /include/asm/system. h

mktime. s mktime.o : mktime.c ../include/time.h

panic. s panic.o : panic.c ../include/linux/kernel.h ../include/linux/sched.h \
../include/linux/head.h .. /include/linux/fs.h ../include/sys/types.h \
../include/linux/mm. h ../include/signal.h

printk.s printk.o : printk.c ../include/stdarg.h ../include/stddef.h \

,79,

5.3 asm. s F&)7

65 ../include/linux/kernel.h

66 sched.s sched.o : sched.c ../include/linux/sched.h ../include/linux/head. h \
67 ../include/linux/fs.h ../include/sys/types.h ../include/linux/mm. h \

68 ../include/signal.h ../include/linux/kernel.h ../include/linux/sys.h \

69 ../include/linux/fdreg.h ../include/asm/system. h ../include/asm/io.h \

70 ../include/asm/segment. h

71 signal.s signal.o : signal.c ../include/linux/sched.h ../include/linux/head.h \
72 ../include/linux/fs.h ../include/sys/types.h ../include/linux/mm. h \

73 ../include/signal.h ../include/linux/kernel.h ../include/asm/segment. h

74 sys.s sys.o : sys.c ../include/errno.h ../include/linux/sched.h \

75 ../include/linux/head.h ../include/linux/fs.h ../include/sys/types.h \

76 ../include/linux/mm. h ../include/signal.h ../include/linux/tty.h \

77 ../include/termios.h ../include/linux/kernel.h ../include/asm/segment.h \
78 ../include/sys/times.h ../include/sys/utsname.h

79 traps.s traps.o : traps.c ../include/string.h ../include/linux/head.h \

80 ../include/linux/sched.h ../include/linux/fs.h ../include/sys/types.h \
81 ../include/linux/mm.h ../include/signal.h ../include/linux/kernel.h \

82 ../include/asm/system. h ../include/asm/segment.h ../include/asm/io.h

83 vsprintf.s vsprintf.o : vsprintf.c ../include/stdarg.h ../include/string. h

5.3 asm.s 2F

5.3.1 ThgeHEA

asm.s YL g FE)3 AL E K> CPU BRI B IR 2 i b A B S 2 AN, AR E A DM B (FPUD
I H AL 2R kemelltraps.c FE/F A B H VIR R . FE) 7K E EAL Uy sURAE P W A 3RS 3
VA FIAHNE R C R B, o AR 67 AN A, SRS IR T

AE B X BRI 2 T HERR AR s i B R AR A 3 B) (B BTG 4 A7) AETT R A
ITREFP 2 i HERRAR B esp Fi4E iR [AI ik — A (1] esp0 Ab). 43K 2538 I 1) C b4 do_divide_error()
B C BRI ARG, FREHA7 B espl b BLINTE I AT AR %, IZRR BRI eax FA7A T,
MR eax MIMEHORAFRIHERR o EIE L Ards AR, HERRIRETH (LB A esp2 Abo 1ENIH
do_divide_error()-Z fiil, FEF-R TFHAAIAT N ¥ esp0 HERRFRFHE I AMERS, T2 T esp3 &b, JFAEHWTIR]
SR NAR 27 A7 de Z BT R AT TR In L 8 IRl H] esp2 4t

,80,

5.3 asm. s F&)7

eflags eflags
H TR [s <— esp0 HH TR [ik <— esp0
(o msotl (can) |« espl /erroricode (eax) p—espl
ebx C PR HE (ebx)
ecx ecx
edx edx
edi edi
44 < esi 44 < esi
ebp ebp
ds ds
es es
fs <— esp2 fs <— esp2
\lerror_code \lerror_code
esp0 <—esp3 esp0 <— esp3
(a) TP A A S S (b) T IbT I K H B AR AR 1 150

[E5. 3 HIEEBHER TR

1E 3 do_divide_error() 2 Fi 48 HU A AC RS LA K espO AAR IR I N TAE NI C %K
do_divide_error()[\1Z%. f£ traps.c FiZREUTIEIE A«

void do_divide_error(long esp, long error_code).
RIHAE XA C b vl LAFT B A R A7 B AR R 5o B b L e i tH AR R AL B R 53K FEL

IR I REFEA AL
ARG A B R BN L 5.4 B

,81,

5.3 asm. s F&)7

AP WA (eax=1 H5)
ebx, ecx, edx FHA S5

Y
]S e 2
A
%ﬂ‘ﬁgg)\ﬁé i eax = _1 i

ds, es 8 M W IZARHE B
s 8) R EREHE B CFH - #cds)

YA XS R C AL ER 4G
Ktk

«—
Y

i schedule () '

Y
L N
FH P iR 2

R4 0 A A 5 o7 1] I R 1

/M5 &, JiH do signal ()

5 N[77 A7 4 i

E5. 4 R rp iR A AR

5.3.2 KGR
5Iz% 5.3 linux/kernel/asm. s ¥2[F

1 /%

2 * linux/kernel/asm. s

3 *

4 * (C) 1991 Linus Torvalds

5 */

6

T /%

8 * asm. s contains the low—level code for most hardware faults.

9 * page exception is handled by the mm, so that isn’t here. This
10 * file also handles (hopefully) fpu-exceptions due to TS-bit, as
11 * the fpu must be properly saved/resored. This hasn’ t been tested

,82,

5.3 asm. s F&)7

12 %/
/%
* asm. s P2 HALFE R IORE AR b (Bl AT AbBE IR Z ARRD . TS5 A i W A7 BRI
* mm ACEER), FTUANTEIX . MREFIE B (S EXFE) T TS0 i fpu 5%,
* [K2R fpu WZIIEM AT LR AT/ IS AR B, X I A WA .
*/

ARG SO B K6 Intel fRB AR IBT int0—int16 A94LFE (int17-int31 BAEA MDD .
LUF 2 S mmEa i m], HJFUEAE traps. ¢ P,

14 .globl _divide error, debug, nmi, int3, overflow, bounds, invalid op

15 . globl _double fault, coprocessor segment overrun

16 .globl _invalid TSS, segment not present, stack segment

17 . globl _general protection, coprocessor_error, irql3, reserved

18

int0 — CMNEAXBAREHE XS HIE 4.1(@@)) .
IR ERR A (divide error) 4FRACHY . FR5° divide error’ SEfF & CIBEFE
divide error O 4t J5 Fr AL B R X N I A 7K. do_divide error’ BAEFE traps. ¢ Ho

19 divide error:

20 pushl § do_divide error # #5CHUK LM B EUHE ANFR . X B P I HES 4 0.
21 no_error_code: LR L B ER N LA, L IS 55 172,
22 xchgl %eax, (%esp) # do divide error HJHulik = eax, eax AL
23 pushl %ebx
24 pushl %ecx
25 pushl %edx
26 pushl %edi
27 pushl %esi
28 pushl %ebp
29 push %ds #1116 M AF AR AR S S] 4 AN
30 push %es
31 push %fs
32 pushl $0 # “error code” # FFHAHIG AR
33 lea 44 (%esp), %edx # WU R B A HER FR ST A7, IR R A HERR .
34 pushl %edx
35 movl $0x10, %edx P RS B A
36 mov %dx, %ds
37 mov %dx, %es
38 mov %dx, %fs
39 call *%eax # A C K% do divide error().
40 addl $8, %esp # EHMERRIREN FBTR 0 AR £s AdRAd.
41 pop %fs
42 pop %es
43 pop %ds
44 popl %ebp
45 popl %esi
46 popl %edi
47 popl %edx
48 popl %ecx
49 popl %ebx
50 popl %eax # 9 Sk eax TN E.
bl iret
52
intl — debug PRTPWIA D A, AR L.
53 debug:

,83,

5.3 asm. s F&)7

61
62
63
64

65
66
67
68

int2 — AEBFRCP WA .

_nmi:

pushl $§ do int3
jmp no_error code

pushl $§ do nmi
jmp no_error code

int3 — [d] debug.

_int3:

pushl $§ do int3
jmp no_error code

#

#oint4d —— v H A RS ER A BN T 5

_overflow:

pushl $§ do overflow
jmp no_error code

ints —— LS A H A N T T

_bounds:

pushl $ do bounds
jmp no_error code

_do_debug C pREFREF AH. LU

#int6 —— JCRERAEIR A AT W D

73 _invalid op:

pushl $§ do invalid op
jmp no_error code

#int9 — WRACRE S BOE H HEE N T R

_coprocessor_segment overrun:

intlb

pushl $§ do coprocessor segment overrun

jmp no_error code

- fRE

_reserved:

pushl $§ do reserved
jmp no_error code

int45 — (= 0x20 + 13) Wit #iZs (Coprocessor) KHBIH K.
MUME B ESPAT S N ERAER S A TRQL3 I E S, DL 40 CPU #4458 .

_irql3:

pushl %eax
xorb %al, %al
outb %al, $0xFO

movb $0x20, %al

outb %al, $0x20

jmp 1f

jmp 1f

outb %al, $0xA0

popl %eax

jmp _coprocessor_error

+H H O H T H=

=

=

#

80387 AEPMAT AN, CPU &5 £ HERAVE I 58 L o
WS 0xFO i 11, AWK B CPU ¥ BUSY RELHF 5, FFHHr
WS 80387 M AL HR A4 il sk 7 | I PEREQ. i #/E 120 T i
EARSINAT 80387 MATATIG A 1, Wi A H BT o

] 8259 FHH W # I A &% BEOT (R4 k) 155 .
XA B A 45 A E IR

FFIn) 8259 M AWz hliS B &2 BEOT (FRIRT4E 00 55 .

_coprocessor_error JFSRAEAR A, B S E

,84,

5.3 asm. s F&)7

97
98
99

100

101

(kernel/system call.s, 131)

LUN rPIbr/E U I o A2 P bR (R k2 R H R 5 e N HERS, RT3 [A4 7 00 H A5 3

int8 — XU

_double fault:
pushl $ do double fault # C R I AHR.

error_code:
xchgl
xchgl
pushl
pushl
pushl
pushl
pushl
push
push
push
pushl
lea 4
pushl
mov1

%eax, 4 (%esp)
%ebx, (%esp)
%ecx
%edx
%edi
%esi
%ebp
%ds
%es
%fs
Y%eax
4 (%esp), %eax
Y%eax
$0x10, %eax

mov %ax, %ds

mov %ax, %es

mov %ax, %fs

call
addl

*%ebx
$8, %esp

pop %fs
pop %es
pop %ds

popl
popl
popl
popl
popl
popl
popl
iret

%ebp
%esi
%edi
%edx
%ecx
%ebx

%eax

CRHZX A S X2 4.1(b))

error code <> %eax, eax JFRIMMEWAAAELEHiRR .
&function <-> %ebx, ebx JRKIMEMIRAFELEHEFR .o

error code # S A
offset # R IR P b HE A HEAR FEET AL AT FR .

#OE WA EOE BUEFETT -

AN C ¥, KA.
HERARET EO R T TBCE. s WARIAL .

intl0 — TERUPLSIRASEL (TSS) .

_invalid TSS:

pushl $§ do _invalid TSS

Jmp e

intll — B

~segment not

rror_code

AL

present:

pushl $§ do segment not present

jmp e

intl2 — M
_stack segmen

rror_code

Bt i
t:

pushl $§ do stack segment

jmp e

rror_code

,85,

5.3 asm. s F&)7

intl13 — AR A

H OH H H H

_general protection:

pushl $§ do general protection

jmp error code

int7 — WRAAELE ((device not available) fF (kernel/system call. s, 148)
intl4 — TR (page fault)7F (mm/page. s, 14)
intl6 — PpabFEES4E % (coprocessor error)fF (kernel/system call. s, 131)
b int 0x20 (_timer interrupt) 7t (kernel/system call. s, 176)
R4 int 0x80 (system call) fF (kernel/system call. s, 80)

5 3 3 ;i't; nlLA
5.3.3.1 Intel RE B EEHENX

IXHLZH T Intel DR B o 7) LA SCRIBERT,

3 5.1 .

5.1 Intel (RERFHIS S

TS | AR BV IR RS i
0 Devide error % | SIGFPE MIAT R AR BRI = A
Fa I YRATRE P ORI, WE TR
1 Debug b SIGTRAP B
2 nmi figiff: AN T] B W NMT =
3 Breakpoint FaBF | SIGTRAP | rhilkr Ai64 int3 7742, 4 debug ALFHAH[F .
4 Overflow falE | SIGSEGV | eflags [t Hibr& OF 5l .
5 Bounds check WkE | SIGSEGV | S3-hik 2 bk PAAM 5 1k
6 Invalid Opcode Wk | SIGILL | CPU HUATISH R I — AL I8 A E
WA, TR . PRI 2774
ZH e (a) CPU & H|— AN 4541 H EM B AT
. . . I o AEIXFPR B0 R A EEFE e AL T B 1)
7 Device not available | #f& | SIGSEGV G (D)MP R TS HZEE GoRAH ., CPU B
WAIT B{— MRS, XN, AR
AR LB N, L?E%‘WJME%’%HW\M
8 Double fault ks | SIGSEGV | XUt 4
9 Coprocessor segment sepin | STGRPE PP 2 B H o
overrun
10 Invalid TSS Wk | SIGSEGY | CPU)3l &t TSS Foik.
11 Segment not present | i(fE | SIGBUS IR PR) BEANEAE o
12 Stack segment WefE | SIGBUS HER BOANAFAE B - BB A B o
13 General protection | #tff | SIGSEGV | #AFFA 80386 LRI ML CRALZD MHAES .
14 Page fault HekE | SIGSEGV | TANTE N 1.
15 Reserved
16 Coprocessor error ks | SIGFPE PR AbBR RS A 1R H I S S5 5

,86,

5.4 traps.c f&F

5.4 traps.c 12/F

5.4.1 ThEeHEA

traps.c Fify AL LUAEAL B H b CREPErR I 1OIRJZAXRS asm.s Al FHIOARRY. C p& %,
TR A B AT A S AR UG B He i dieQam H s 2O TAE T WAL B WO TR AR (E R, 1
AR5 i IR AR A PR L trap_init ()& 7ERTIH init/main.c TRER A, HTREAF 2 A B i i CREBET DD
fRnhatt, JFECE S VFTH R SRR ERRARP N T 22 % asm.s F2)7.

5.4.2 R#EERF
51122 5.4 linux/kernel/traps.c &7

1%

2 * linux/kernel/traps.c

3 #

4 * (C) 1991 Linus Torvalds

5 ¥

6

1%

8 # ’Traps.c’ handles hardware traps and faults after we have saved some

9 # state in 'asm. s5’. Currently mostly a debugging-aid, will be extended
10 # to mainly kill the offending process (probably by giving it a signal,
11 # but possibly by killing it outright if necessary).
12 #/

/%

* AR asm. s HORAE T 2R IG, AR R A ELAEFFBE RS . H AT 2220 T ul H 1,
s LUSRH AR JEEA AR (FEREE AL — M5 T, (HaR R EW S HER) .
*/

13 #include <string.h> /)RR FEE ST B AT R R R N BRI AL

14

15 #include <linux/head.h> // head 33, & T BARFTI I ELEGHE, LA IERERTH & .

16 #include <linux/sched.h> // WEEREFLICAT, & L TAES45H task struct. MRS 0 %,

/] A TR T S HORE SR i N\ 2 G R O TR

17 #include <linux/kernel.h> // WHZKICHF. &4 LM% H BB J5UE & L.

18 #tinclude <asm/system.h> // REGKICAF. & T BCE S SR AT/ W 148 I RN 90 %
19 #include <asm/segment.h> // BUEAELRICMF. 58 T A RBEAF AR de AR AR AR 20 G R 2

20 #include <asm/io.h> [/ BN/ S SISO o SCREA R VRN /i R G T R

N
—_

// UL A e LT MR gn 28) e 4. A RN I G (M SE A TRV WA 3R 5 82 DL I % .
// BB seg Wk addr 4L —ANFAY .
#tdefine get seg byte(seg,addr) ({ \
register char res; \
_asm__("push %%fs;mov %%ax, $%Ls movh %%Ls:%2, %%al pop %%fs” \
2 =a” (res): 7”7 (seg), m” (x(addr))); \
_res;})

// BB seg bl addr 2 —MEFE (4 FTT)
28 ttdefine get seg long(seg, addr) ({ \
29 register unsigned long res: \

,87,

5.4 traps.c f&F

30 asm_ (“push %%fs;mov %%ax, %%fs;movi %%fs:%2, %%eax; pop %%fs” \
31 :"=a” (__res):”” (seg), ‘m” (x(addr))):; \
32 res;})

// B fs BEAAAras A GERERD)
34 #define _fs(O ({ \
35 register unsigned short _ res; \
36 asm_ (“mov %%fs, %%ax”: "=a” (__res):); \

37 _res;})
38

/) LR SCT ek A U
39 int do_exit(long code) ; // (kernel/exit.c, 102)
40
41 void page_exception(void) ; // [2?]
42

// PUR N T —Lerh Wi Ab PR P R Y, ARIDEE (kernel/asm. s BY system call.s) i,
43 void divide error (void) ; // int0 (kernel/asm.s, 19) .
44 void debug (void) ; // intl (kernel/asm. s, 53) .
45 void nmi (void); // int2 (kernel/asm. s, 57) .
46 void int3(void); // int3 (kernel/asm. s, 61) .
47 void overflow(void) ; // int4 (kernel/asm. s, 65) .
48 void bounds (void) ; // inth (kernel/asm. s, 69) .
49 void invalid op(void); // int6 (kernel/asm. s, 73) .
50 void device not available (void) ; // int7 (kernel/system call. s, 148),
51 void double fault (void); // int8 (kernel/asm. s, 97) .
52 void coprocessor_segment overrun(void); // int9 (kernel/asm.s, 77).
53 void invalid TSS(void) ; // int10 (kernel/asm.s, 131).
54 void segment not present(void); // intll (kernel/asm.s, 135).
55 void stack segment (void); // int12 (kernel/asm.s, 139).
56 void general protection(void); // int13 (kernel/asm. s, 143).
57 void page fault (void) ; // intl4 (mm/page. s, 14) .
58 void coprocessor_error (void) ; // intl6 (kernel/system call.s, 131),
59 void reserved(void) ; // int15 (kernel/asm. s, 81).
60 void parallel interrupt(void); // int39 (kernel/system call.s, 280),
61 void irql3(void); // int4b PRALERES P ALPE (kernel/asm. s, 85) o
62

/) SRR HSRITEN I P 2 R eE S . ARIRS2) EIP. EFLAGS. ESP. fs EXZifrasfii.
[/ B bk, B R, RS pidy fT45 5. 10 FHIE A . G HERR LS) EAE B, ik
// FTEN 16 AT IR N 25 .

63 static void die(char * str, long esp ptr, long nr)

64 {

65 long * esp = (long *) esp ptr;

66 int i;

67

68 printk ("%s. %04x\n\r”, str, nr&0xf1fr) ;

69 printk(”EYP:|t%04x:%p|nEFZAGS:\t%p\nﬁSP:\t%04x:%p|nf

70 esp[1], espl0], esp[2], esp[4], esp[3]);

71 printk ("fs: %04x\n”, _£s());

72 printk (“base: %p, limit: %pl\n”, get base(current->1dt[1]), get 1imit (0x17));
73 if (espl4] == 0x17) {

74 printk (“Stack: 7);

75 for (i=0;i<4;i++)

76 printk(“%p 7, get seg long(0x17, i+(long *)espl3]));

,88,

5.4 traps.c f&F

77 printk (“\n7) ;

78 }

79 str(i);

80 printk ("Pid: %d process nr: %d\n\r’, current—>pid, Oxffff & i);

81 for(i=0;1i<10;i++)

82 printk ("%02x 7, 0xff & get seg byte(esp[1], (i+(char *)esp[0])));
83 printk(“\n\z") ;

84 do exit(11); /% play segment exception %/

85 }

86

// LA IXEEDL do 13k 1A BRI R0 X6 N 44 Bk v IR A BRFR P 1R FH 1 C eR AL
87 void do_double fault(long esp, long error code)
88 {
89 die(“double fault”, esp, error code) ;
90 }
91
92 void do_general protection(long esp, long error code)
93 {
94 die(“general protection”, esp, error code) ;
95 }
96
97 void do_divide error(long esp, long error code)
98 {

99 die(“divide error’, esp, error code);

100 }

101

102 void do_int3(long * esp, long error code,

103 long fs, long es, long ds,

104 long ebp, long esi, long edi,

105 long edx, long ecx, long ebx, long eax)

106 {

107 int tr;

108

109 asm_ (7str %%ax”: "=a” (tr): 77 0)); // BAFESH AR EDtr.
110 printk (“eax|t|tebx |t | tecx |t | tedx |\n\r%Sx | t%8x | t%8x |\ t%8x \n\r”,
111 eax, ebx, ecx, edx) ;

112 printk (“esi|t\tedi |t \tebp\t\tesp\n\r¥Sx\t%8x\ t%8x\t%8x\n\r”,
113 esi, edi, ebp, (long) esp);

114 printk (“\n\rds\tes\tfs\ttr\n\ridx\ thdx\ t%4x\ t%dx\n\r”,

115 ds, es, fs, tr) ;

116 printk ("EIP: %8x CS: %4x EFLAGS: %8x\n\r”, esp[0], esp[1], esp[2]);
17}

118

119 void do_nmi (long esp, long error code)

120 {

121 die(“nmi”, esp, error_code) ;

122 }

123

124 void do_debug(long esp, long error_ code)

125 {

126 die (“debug’, esp, error_code) ;

127 }

128

,89,

5.4 traps.c f&F

—_
[\
©

void do overflow(long esp, long error code)

—
w
o
—

—
wW
—

die(“overflow”, esp, error code) ;

— =
W (Lo
w DN

—

—
w
~
<

o

.
=W

do bounds (long esp, long error code)

—
w
(@]
—

—
w
»

die ("hounds’, esp, error code) ;

— =

w

oo [
f—

—_
w
©
<

@]

—.
o

do_invalid op(long esp, long error code)

—
(I
o

—_

—
(IS
—

die(“invalid operand’, esp, error code) ;

—
(IS
Do

—

—
(IS
wW

—
(I
[N
<

@]

=
Q.

do device not available(long esp, long error code)

—
(IS
(@3]

—

—
[N
»

die(“device not available’, esp, error code) ;

—
[ISN
-3

—

—
[N
0]

—_
[ISN
©
<

@]

—.
o

do coprocessor segment overrun(long esp, long error code)

[
a1
o
—

—
(@)}
—

. Y 7”7
die(“coprocessor segment overrun’,esp, error code) ;

— =
1 |O1
w DN

—

—
ol
=~
<

o

.
=W

do invalid TSS(long esp, long error code)

—
o1
(@]
—

—
a1
»

die(“invalid 7SS’ esp, error code) ;

—
1
3
—

—
1
[0¢]

[
ol
©
<

@]

—.
(o

do segment not present(long esp, long errorfcode)

—
(@3]
o
—

—
[op}
—

die(“segment not present’, esp, error code) ;

—_
»
N\

—

—
o
w

—_
»
[IN
<

@]

—.
o

do stack segment (long esp, long error code)

—
»
(Sa]

—

—
(o3}
[@p}

die(“stack segment”, esp, error code) ;

—
[ep}
3

—

—
o
co

—
(o3}
NeJ

void do coprocessor error(long esp, long error code)

—
-3
()

—

—
-3
—

if (last task used math != current)
return;
die (“coprocessor error’, esp, error_code) ;

—
-3
N}

—
-3
w

—
-3
>

—

—
-3
(@}

—
-3
[@p}

void do reserved(long esp, long error code)

—
-3
-3
—_

—
-3
(0]

die(“reserved (15, 17-47) error”, esp, error_code) ;

—
-3
©
—

18

(e}

// NHEESE (EBE IR PP TR . WEEATI PR ChlrmED

,90,

5.4 traps.c f&F

// set trap gate() 5 set system gate () [EEX HILE T H W E FRALH N 0, Ja& 2t 3. Kk
// Wi FEBER I int3. ¥ H I over £ low A At 4 47 W bounds A BA HATAR AR 772 2k
/) XA BRI S NI G B A (include/asm/system. h, 5 36 47+ 39 47) .

181 void trap init(void)

182 {

183 int i;

184

185 set_trap gate(0,÷ error); // WEBRGAEHERKPEIREME. LFEHR.
186 set trap gate (1, &debug) ;

187 set_trap gate (2, &nmi) ;

188 set system gate (3, &int3) ; /% Int3-5 can be called from all */
189 set system gate (4, &overflow) ;

190 set system gate (5, &bounds) ;

191 set trap gate (6, &invalid op);

192 set trap gate(7,&device not available);

193 set trap gate (8, &double fault);

194 set trap gate (9, &coprocessor segment overrun) ;

195 set trap gate (10, &invalid TSS) ;

196 set trap gate(ll, &segment not present);

197 set trap gate (12, &stack segment) ;

198 set trap gate (13, &general protection) ;

199 set trap gate (14, &page fault);

200 set trap gate (15, &reserved) ;

201 set trap gate (16, &coprocessor error) ;

// TP int17-48 (IMBET 15635 B) reserved, LLFEREAMELEWILE AN 2 8 % & @ S RIBEBE T .
202 for (i=17;1<48;i++)

203 set trap gate(i, &reserved);

204 set_trap gate (45, &irql3); [/ WEPME AR EIBABETT

205 outb p(inb p(0x21)&0xfb, 0x21) ; // FoVFAE 8259A 5 F I TRQ2 KT K
206 outb (inb_p (0xA1) &0xdf, 0xAl) ; // FEVFAN 8259A W I TRQL3 i K
207 set_trap gate(39, ¶llel interrupt); // W&EIFTHHIFEBET.

208 }

209

543 EEER
5.4.3.1 IR AN CHEBIELRIER

AT R IRAE WAL e TP il 31 C 1 5 P IR A SIE gAY o th T IRATER 1 C i S

G L R R RS FR AN IR 0, PR LA 0 B JL AR QAT T B IR, PR)

YL Z 0L GNU gee THHH[5]45 4 %A %% (Extensions to the C Language Family), 5% 22% CHk[20]
(Using Inline Assembly with gcc).

LA N S BRI G (1 FE ARG 208 -
asm(“JgwiEa)”
 HH A A

PN e
DSBS T A);

,91,

5.4 traps.c f&F

Forp, “ILGIER)” RAREILG TR A A R I BUR AL AT S, kL
WA T AE TR A . g, XEERALER RIS N C 1R F RIS B AL “ N BT A
a7 BORETHR A TIC ARSI, X HLRRE) L2 A s o N TR B ANEL, e AT IR 0% N — C 722
AU N IBA T 7 AR AT G A (KA %

FATAE TSI T T AR AR 22 4TI AG 10— BUREE AR 0] R PR U, D4 T REE T 2B T TR X
B AT T OB HEA 2 5

01 #define get_seg_byte(seg,addr) \
02 ({\

03 register char __res; \

04 asm__ ("push %%fs; \

05 mov %%ax,%%fs; \
06 movb %%fs:%2,%%al; \
07 pop %%fs" \

08 M=a" (__res) \

09 ™ (seg),"m” (*(addr))); \
10 __res;})

KB 10 AR E LT — AMRNICGE 5 E R RN E), TEE—AT L X, P IX BT
SRR\ X LB A AT o IR 4R 7 58 SCB O e B 72 A RRAE RS e s | R 7 o 28 1 AT LT %
(47K, HRIE 2B TR get_seg_byte(seg,addr). & 3 47 LT —ANHrasdi res. 25 4 171
_asm__FoRIRANICRIEAIITT A . WEB 44T RI5 7471 4 4 AT&T MR gwiE).

55 8 TR EH H P A7 A, XA XUR AR BUARISIZ AT 45 ks eax AR MM Z7 A7 85 AE BN res
A, VENARREETE, "=ath At O AR, "=t RN A AR . B 9 AT RREIX B
RIS TFURIBAT IR seg JlE eax FA7ast, "ol LT[R & (1 tH AR R R 25 A7 4% o 17 (*(addr))
FOR—ANWARE HHE . T AE LI g v Ay s A, RN TS B 4 R R\ 2 A7
BTG s T i A8 S B4 A BR BL%0 R4, 43 5iiE k%0, %1, ...%9.
DRI, T A A7 1 G5 %0 G LA — M A7 4748, BN TR AR BT — 320 (™ (seg)) 145 /2 %1,
I B84 W 5 2 %2, B2 6 47 1 11%2 B3 (*(addn))iX AN WA S 1 .

IMAETRAT RIS 4—T7 AT B IIPER . S0k fs BEAFAEa N AAAR: 5 A% eax B
EIREE fs BL 2 frans 25 A2 fsi(*(addn) T dia & 2 18N al 27 e SPUTseilgmiBal)a,
FATAE eax MBI _res, 1E M7 BUMIRIAE . R, AJEng?

WL BT oA, BA1NIE, A RRT seg AR — TR E BN AE B, 1T addr s — WAF R Hikik 5
FIAE S 1k, BRATINVAZARE X BRE P I AE TR U %% BB ThRE J& T o BRIV RS (R 1% P4 A7 s kb Ak
=AM,

HE KT
01 asm("cld\n\t"

02 "rep\n\t”

03 "stol"

04 I B AR X

05 : "c"(count-1), "a"(fill_value), "D"(dest)
06 : "%ecx", "%edi");

,92,

5.4 traps.c f&F

1-3 47IX = Al M gniEf), ALEE T FAL, EEAAAE. B 4 T U BRI GfE 3
MRV 5 48 55 SATHIR U2 H count-1 IRELINERE] ecx ZFfrdsth CngfRag 2 e, fill_value i
% F) eax 1, dest K F| edi 1. KA ZLL gee i ERE T B MOXAE I AT AR E N, A LERATT A Sl
We? DAI2h gee 76 & AT Z A7 A 7 FL i] AT SR8 iqb TAE . Bian fill_value i v] B8 V& 1E eax 1o Wi
SEAE—MEFER) TS, gee M RELEREANMEINERAE TP OREE eax, IXAFEE AT LAZERERAEEA D —A
movl i&A].

I i AT IAE A E A JF gee IXEEFF A PR AR T AR BRI ? AL AE gee ANTE fREIX UL T
e et 45, XhsERemex) gee MARALERVEA T B

NHAER T, LR nT B2 H B B A g AR S L AR S

5.2 ERFFRMEARGIRAA

5| Ui R85 | B

a 1 75 A7 4% eax m A5 H A7

b i FH 25 474 ebx 0 5 A7 k5 v] LU m A% A
c i FH 75 7 4% ecx | {4 F %5 0-31

d i 25 174 edx J {8 i %4 0-63

S i] esi K 1 FH &5 %5 0-255

D i edi L 1 F ' % 0-65535

q A8 A /B0 745 v] -0k 25 A7 4% M i H % 0-3

(eax. ebx. ecx ok edx)
AR BN ELH) AF fE 2% i 175 H 4 (0-255)
g A8 FH 38 A5 2% sk R ey 0 i FHH %k 0-31
(eax. ebx. ecx. edx BN fEAZ)
A i] eax 55 edx WE5 (64 £i7)

z

NP AGRLEGR B O E MRS S AA s, Mg ik goc M AREERE.

01 asm("leal (%1, %1, 4), %0"
02 =)
03 :"0"(x));

SR gniER) leal (rl, r2,4), r3 EAJE N rl+r2*4 D 13, XAl LAAR R Pebiols x e 5. H
"060","%1" TR gcc HBN AL Ards . X %1 RN x ZURA M A Ardy, "%0" K7t i 75 17
Ao HH FAEARR T — B EINAE T . WA N A AR AR 2 O B A, T B ASE A A R A
— R . FTLL, W05 gee K r 3R A eax [1ITE, HSA IRV Guih A0 2 SR |

"leal (eax,eax,4), eax"

HE: EPATARREES, WERAREIL BRI gee LALTRa 7, SUFEZEE asm 55 5 N
volatile S 7] :

asm volatile (......);
B SRS B A«

__asm___ volatile_ (......);

,93,

5.5 system call.s &%

AR A KB, i REEETSE, IS UE IR AN g AR AD X R BIEAR B T . X BHAR
i 2 M include/string.h SCAEHIRELE), /& strnemp() 745 £ LUES R B —FP s, FHEEREE, Hphd
A \n\eE - gee TACEERE P4 R AR I B TR E 1Y, & X5 C S AR .

/)] ERFER L SRR 2 IUET count AN FEAFIET LR

/) B cs - FRE L, et - FRE 2, count - HURIIEREL.

// %0 — eax(__res)iR[MIME, %1 - edi(cs) & 1 541, %2 - esi(ct) H# 2 8%F, %3 - ecx(count) .
/7 REL W1 > B2, WERE 1 B = 52, WERMI 0 1 < H 2, MERE-1.

extern inline int strnemp(const char * cs, const char * ct, int count)

{

register int res ; // res EHAFRRAE,

~asm_ (“cld\n” // G IT 1AL
“1:\tdecl %3\n\t” // count——o,
“js 2f\n\t” // TR count<0, N ETELEE BFRS 2.
“lodsb\n\t” // BUER 2 24T ds: [esi]=al, FFH esit++s
”scasb\n\t” // b al H5H 1 TR es: ledi], FFH edit++,
”jne 3f\n\t” /) WERASHHEE, D)) ks BbR 5 3.
“testb %%al, %%al\n\t” /) %R A NULL 25 ng 2
”ine 1b\n” /) A, WS Bk RIbR S 1, dRERHEER.
"2:\txorl %%eax, %%eax\n\t” // J& NULL “F4F, N eax iEE GRFIME) .
“jmp 4f\n” // R HTEkEE BbR T 4, S5
73:\tmovl $1,%%eax\n\t” // eax & 1,
7j1 4f\n\t” // WURTTH PR PR 2 R 2 R, R L, 45
"negl %%eax\n” // T eax = —eax, R[FIH{E, Z5HK.
y
=" (_res):”D” (cs),”S” (ct),”¢” (count):”si”, “di”, "cx”) :

return res; // RPIEERAE R,

}

5.5 system_call.s 12

5.5.1 DigediR

AFEY SR 4018 F (system_call) FR K int Ox80 [1 AL FHI FE DA K A 5 40 i A B AACHE 25 80
TR, FRIBAH TN REINRENRIZH D, 439/ sys_execve Fll sys fork. &% H T Ab P FE2RAN
(R PpAL B S (int 16) B ANEAE(INGT) NPk (int32) . AL Pk (int46) . B4 Hh kT (int38) (1) v Ik ik
HPEFR T o

XofF- 4 K (system_call. coprocessor_error. device not_available), Ab¥idFedkAs b2 5k kil FAH
I C R EAE PR FPAE S, # LS UR ANMERR, XI5 C BT AH N DI RE AR BE, AL PH IR [H] 5 T
A G LSS S TALE, AR —AME ST BT AL SALE TP G Y. RGN C
T 5 AL PR B A AE A linux ARZARES A, i include/linux/sys.h Sk SCPEHR IR R 458 R B R £ B4l sk T
[

X AR R I SRS S IRQ AR A W, FEARBERLRE 15 56 A2 1) rR I Fr 8250A ik 45 R filif
Wil 745 EOL, SRS TR AN C pREALBERE > o X1 I b R 0] 4 i A1 55 R4 5 02 Jel e AT A6
HILGEZER

,94,

5.5 system call.s &%

5.5.2 R#EERF
BIZ% 5.4 linux/kernel/system call. s &5

1 /%
2 #* linux/kernel/system call.s
3 *
4 * (C) 1991 Linus Torvalds
5 %/
6
T /%
8 * system call.s contains the system—call low-level handling routines
9 * This also contains the timer—interrupt handler, as some of the code is
10 * the same. The hd- and flopppy—interrupts are also here
11 *
12 * NOTE: This code handles signal-recognition, which happens every time
13 * after a timer—interrupt and after each system call. Ordinary interrupts
14 * don’ t handle signal-recognition, as that would clutter them up totally
15 3 unnecessarily.
16 *
17 * Stack layout in ’ret from system call’:
18 *
19 * 0(%esp) — %eax
20 * 4 (%esp) — %ebx
21 * 8 (%esp) — %ecx
22 % C(%esp) — %edx
23 % 10 (%esp) — %fs
24 * 14 (%esp) — %es
25 % 18 (%esp) — %ds
26 % 1C(%esp) — %eip
27 =% 20 (%esp) — %cs
28 % 24 (%esp) — %eflags
29 =* 28 (%esp) — %oldesp
30 =* 2C (%esp) — %oldss
31 */
/%
* system call.s RS RFATH (system—call) JIK)ZEFFFE7 . i TH LA LLESRL, BrLL
* [RGB WAL BE (timer—interrupt) AJA . T AR EAL A o W AL BRFR Rt EIX L.
*
* R XBACIIALBIAE T (signal) R, ZEREN Brh A R S FH 2 e #3110 . — &
* HHE S H A LIS S, Y& 4 RG0S R L .
*
* NRGIHIRM C ret from system call’) IHEFRII A AL _F1H 19-30 4T,
*/
32
33 SIG CHLD =17 # & X SIG CHLD {55 (FabfHs haidi) .
34
35 EAX = 0x00 # HERR AT AEA M AL
36 EBX = 0x04
37 ECX = 0x08
38 EDX = 0x0C
39 FS = 0x10

,95,

5.5 system call.s &%

48
49
50
51
52

ES = 0x14
DS = 0x18
EIP = 0x1C
CS = 0x20
EFLAGS = 0x24

45 OLDESP = 0x28 B AR RN .

46 OLDSS = 0x2C
DU XSS AT 45454 (task struct) FAA B MZIE, S0 include/linux/sched. h, 77 477145,
state =0 # these are offsets into the task-struct. # HEFRIREHH
counter = 4 # AT o8 G) GREED , BT A
priority = 8 [/ BT ALSS TR T counter=priority, BOKMEIEAT N K,
signal = 12 /] RAGETALE, ALK —ME S, B 5= B+,
sigaction = 16 # MUST be 16 (=len of sigaction) // sigaction ZEFJKERAZIE 16 F 5

/) A T PAT IE S RS AR, X NAT 5 BT A E bR S .

blocked = (33*16) // ZRRZEAR S AL A A

DA XA sigaction &t Mg &, 20 include/signal.h, 5 48 1T H14hH.
offsets within sigaction

sa_handler = 0 // s TS RIS (REIR) .

sa mask = 4 // G T B

sa flags = 8 /] AE 5.

sa restorer = 12 // IR BIRE AT IR

61 nr system calls = 72 # Linux 0. 11 lRAZHFHI RS H 25

63 /*

* Ok, I get parallel printer interrupts while using the floppy for some
* strange reason. Urgel. Now I just ignore them.

*/

/%

* T, EATHAROKI TR R T IATATEIAL I, ARFRE. W, BIEAEE

*/

o XN,

.globl system call, sys fork, timer interrupt, sys execve

.globl hd interrupt, floppy interrupt, parallel interrupt

.globl device not available, coprocessor error

HIRMARZ WA .
.align 2 # N4 TIN5
bad sys call:
movl $-1, %eax # eax FE-1, BHHW.
iret
BEHPATHERERPAND .. FEREP schedule 7E (kernel/sched. ¢, 104) .
.align 2
reschedule:
pushl $ret from sys call # Jf ret from sys call Byl A%k (101 47) .
jmp _schedule
##H int 0x80 —linux ARG L s G K int 0x80, eax H2IHHS) .

79 .align 2

80 system call:

cmpl $nr system calls—1,%eax # VM5 U HAB G IR ELTE eax T E-1 B H.
ja bad sys call

,96,

5.5 system call.s &%

94
95
96

102
103
104

Ju—
(e}
Ne)

—
—
o

—_
—_
—_

—_
—
Do

—
—
w

—
—
S

—
—
(@]

—_
—
[op}

—
—
-3

[
—
co

push %ds # RAF IR B T A

push %es

push %fs

pushl %edx # ebx, ecx, edx "HCE RGE AN C 15 F R E W 240
pushl %ecx # push %ebx, %ecx, %edx as parameters

pushl %ebx # to the system call

movl $0x10, %edx # set up ds,es to kernel space

mov %dx, %ds # ds, es $i) WAZ 0 Bt (8 R R 77 8 i Bl Be IR)

mov %dx, %es

movl $0x17, %edx # fs points to local data space

mov %dx, %f's # fs 45 R B B O A 75 28 vh Bl BeRR 7F) o
#OF XA ERAE RN SO AR = sys call table + %eax * 4. ZWAIKJGHIULIH
XN C BRI sys call table 7F include/linux/sys. h v, Hg e X T —Aads 72 4
REAH C AR E bt a3k .

call sys call table(, %eax, 4)

pushl %eax # RS ANt

movl current, %eax # BUCYFTATSS IR B 45 iy bl =» eax.
NI 97-100 /T A F YA TS B TIRE . WRAEMGIRE (state AN%ET 0) B L HATHERET .
W RZATE S AE R AIRESH counter [22M{EEET 0, M ZHATHERF.

cmpl $0, state (%eax) # state
jne reschedule
cmpl $0, counter (%eax) # counter

je reschedule
IR IXBACHHAT N RG] C BORFIE, AHE 5 Ed AT N
ret from sys call:
AN YT T R IUGAESS task0, WIHENIAN DX A TE 5 27 e B, HER M.
103 17 B _task XN C FEFH Y task (14804, BH¥ZGIH task #H24T 51 task[0].

movl current, %eax # task[0] cannot have signals
cmpl task, %eax
je 3f # [T (Forward) Bk 2br 5 3.

30T U YRR e A A R e BRI W R e 2 B o W SR B])t L%
AR, AN EEATE TR X B LRGP 1 I T] AR B E FEAT 0x000F
(RPL=3, R#l#, % 1 MBLUCLEYD), WRAENIBEER Wiy

cmpw $0x0f, CS (%esp) # was old code segment supervisor ?
jne 3f

WIREHERRBOE BT AN 0x17 (BRI R MEARANTE F P s Berb) . BB H .
cmpw $0x17, OLDSS (%esp) # was stack segment = 0x17 ?
jne 3f

R IR BACES (109-120) B 1 AEDCU AL S 2t b s S A0 (32 A, BRALARK 1 FifE5) ,
RS MR RME SRE%E (BERO 15, FRZEAR TGS, BSHERDMIESE, Bt
FESAMEPZE SN EN (B 0) , REKiZESHEENSE . —1/H do_signal .

do signal OfF (kernel/signal.c,82) H, HESHAF 13 PAKKME S,

movl signal (%eax), %ebx # HUE T K Debx, 1 iK1 P55, 32955,
movl blocked (%eax), %ecx # WPHZE () 550K Pecxs
notl %ecx # FEATE .
andl %ebx, %ecx # AT E AL .
bsfl %ecx, %ecx # MIEAL (67 0) FFURHER K, BRERSA 1 1A,
#7, W ecx PREDZMMMAEAE (EPEE)LAL 0-31) &
je 3f # WA S W ATk R .
btrl %ecx, %ebx # HAizfES (ebx FHR signal (&)
movl %ebx, signal (%eax) # FHRAE signal A7 EME A= current—->signal,
incl %ecx # RS IR 1 TR (1-32) .
pushl %ecx # 55 EAERIE N do_signal FIZH2 —.

,97,

5.5 system call.s &%

—
—
©

[
[\
o

[
)
—_

[
[\
)

—
DO
w

—
[\
i~

—
[N}
(@]

—_
[\
»

—_
[N
3

—_
[\]
co

—_
[\]
©

—
wW
o

—
w
—

—
wW
[N}

—
w
w

—
W
(IS

—
w
(@a]

—
w
»

—
wW
Q9

—
w
(00

—
w
©

—_
S
[e)

—_
S
—

—_
S
[\

—_
S
w

—
A
o

—_
S
ol

—_
S
(o)

147

—
-3

—
(IS
co

149
150
151
152

—
()]
w

—
1
(IS

—
()]
(@a]

—
(Sx
»

—_ =
1
0 |1

—
(@)
©

—
(@3]
o

—
»
—

—_
o
N\

call do signal # I C BB 5 AR (kernel /signal. ¢, 82)
popl %eax # P E S
3: popl %eax
popl %ebx
popl %ecx
popl %edx
pop %fs
pop %es
pop %ds
iret

g8 intl6 — N BACID AL BEPRAE BE A I RS T o B IAT C B math_error ()
(kernel/math/math emulate.c, 82), R[FIJGH¥ kS| ret from sys call AbZk&EH0AT .
.align 2
_ COprocessor error:

push %ds

push %es

push %fs

pushl %edx

pushl %ecx

pushl %ebx

pushl %eax

movl $0x10, %eax # ds, es B TR IR WAZEEE B .

mov %ax, %ds

mov %ax, %es

movl $0x17, %eax # fs BNIRMRAEY B CGHERFRIEIEED .

mov %ax, %fs

pushl $ret from sys call # UMV B HbE ANFR .

jmp math error # 4T C BA%L math error () (kernel/math/math emulate. c, 37)

#Hf int7 — WRAANAIELEB A2 ATELE (Coprocessor not available) s
W 2 A7 A CRO (1) EM AR B, WY CPU $hAT—A ESC e ARSIt & 51 A% W, XAk
AT LA AL EIX A T AL BERR PR ESC % HR4 (169 17) .
CRO] TS kR AEAE CPU PUATAR S5 HE B I & 10 o TS] LUF SR Hf 2 AT A i B AL BEZS T I g 28 (R 3O
5 CPU IETEPATIAESSANILEL T o 24 CPU 7EIBAT — AN AR A BRI TS BAL T, whas gl &% W,
HEI RN %K S HAT 45 B BB A TIR S (165 17) o 2L (kernel/sched. ¢, 77) H UL .
% WS S AR S ret from sys call AT T2 CRIINFFAAFIES)
.align 2
_device not available:

push %ds

push %es

push %fs

pushl %edx

pushl %ecx

pushl %ebx

pushl %eax

movl $0x10, %eax # ds, es BN NZEHEE .

mov %ax, %ds

mov %ax, %es

movl $0x17, %eax # fs BNIRM A B CGHERFRIEIRED .

mov %ax, %fs

pushl $ret from sys call # T Bk H AR A IE A F .

clts # clear TS so that we can use math

,98,

5.5 system call.s &%

— =
-
o o

—
-3
-2

—_
-3
co

—
-3
el

[
o
o

[
co
—_

[
co
N

—
0
w

—
o
~

—
0
(@]

[
co
»

—
<o
3

— =
oo |Co0
O [Co

movl %cr0, %eax
test]l $0x4, %eax

je math state restore
pushl %ebp

pushl %esi

pushl %edi

call math emulate
popl %edi

popl %esi

popl %ebp

ret

EM (math emulation bit)
#OWERAIE EM SR, WP H T4 U b BE SV IR S
AT C FRA% math state restore() (kernel/sched. c, 77) .

A C % math emulate (kernel/math/math emulate.c, 18).

XM ret BEkEES] ret from sys call (101 47) .

#t int32 — (int 0x20) W EhrWTAREERE Y. WP 4 % B4 100Hz (include/linux/sched. h, 5),
SEI F 8253/8254 4 7E (kernel/sched. ¢, 406) AbWIEAALIK . RIBLIX L jiffies 4 10 Z /000 1.

OXBACHDE jiffies B9 1, KRIELATWITEA S 8259 =iHI8s, ARG H ATt AL b S50/ A

C A% do timer (long CPL) . 41 iR [0 i 5 2 kil b H#E A5 5 o

.align 2

_timer interrupt:
push %ds
push %es
push %fs
pushl %edx
pushl %ecx
pushl %ebx
pushl %eax
movl $0x10, %eax
mov %ax, %ds
mov %ax, %es
movl $0x17, %eax
mov %ax, %fs
incl jiffies

save ds, es and put kernel data space
into them. %fs is used by system call

we save %eax, %ecx, %edx as gcc doesn’ t

save those across function calls. %ebx
is saved as we use that in ret sys call

ds, es BN R ALK B

s FONTE A RSB CRASTE R IEHEBD .

T AR T R I R SR T B3 BOT, B LA L SR R 2 G R A T

movb $0x20, %al
outb %al, $0x20

EOI to interrupt controller #1
HAEG AT 0CW2 1% 0x20 i [,

NI 3 AR PR IR M RTRAL O (0 B8R 3) I A HMERR, 1Ey do_timer IZHL.

mov] CS (%esp), %eax
andl $3, %eax
pushl %eax

%eax is CPL (0 or 3, O=supervisor)

do_timer (CPL) HATAES- YN He . +FINZE T AE, 7E kernel/shched. ¢, 305 47528,

call do timer
addl $4, %esp
jmp ret from sys call

“do timer (long CPL)’ does everything from
task switching to accounting ...

Hitttt IXJE sys_execve O R . B WA FIRISFEEE A SEAH C % do_execve () .

do execve) fF (fs/exec. c, 182) .

.align 2

_Sys_execve:
lea EIP (%esp), %eax
pushl %eax
call do execve
addl $4, %esp
ret

EFF R EAHRR EIP {5,

,99,

5.5 system call.s &%

207
208
209
210
211
212

Do
©

Do
—
w

Do
—
(IS

Do
—
(@a]

[N
—
»

Do
it
=

[N
—_
co

[N
—
©

Do
[\
(e

gt sys fork O MM, MO THERE, /2 system call ThEE 2. JREAE include/linux/sys. h 1,
LA CBREL find empty process (), S — NIRRT pid. IR H ar/T 45 204l
Ol)5 copy_process () ZHiliiFE.
.align 2
_sys_fork:
call find empty process # M find empty process() (kernel/fork.c, 135).
testl %eax, %eax
js 1f
push %gs
pushl %esi
pushl %edi
pushl %ebp

pushl %eax
call copy process # A C B4 copy process() (kernel/fork. c, 68) o
addl $20, %esp t EFIXBHERNRE

1: ret

g int 46 — (int Ox2E) fEAL-HWTALBERL), Wi S AE A b Wi sk TRQ14.

AR E s e AR S R TP TS 5. (B kernel/blk_drv/hd. c) .

H5E M) 8259A H WA Il NS v A A A A e 4 (EOT) , ARG HCAR & do hd H R ER £ N edx
Zifrasd, JFE do hd Ky NULL, & HIWT edx BREFRE & BN WA, W4 edx IRAEFR M

unexpected hd interrupt (), HF B awHEE. BEfE R 82594 i ik EOI $54, FERA edx
FREM8 M BIRE: read intr (). write intr () B{ unexpected hd interrupt().

221 hd_interrupt:

[N}
w
w

[N}
w
(I

[N}
w
(@a]

[\
w
»

[N}
w
]

[\
w
co

pushl %eax

pushl %ecx

pushl %edx

push %ds

push %es

push %fs

movl $0x10, %eax # ds, es B AWNZEILE
mov %ax, %ds

mov %ax, %es

movl $0x17, %eax # s HAHHEF RS ETRE.
mov %ax, %fs

H AR T S A SR A B30 BOL, T LK L5 2R HR 4 4 SR B 1 T

movb $0x20, %al
outb %al, $0xA0 # EOI to interrupt controller #1 # %M 8259A,
jmp 1f # give port chance to breathe

1: jmp 1f # SEIAE .

1: xorl %edx, %edx

xchgl _do_hd, %edx # do_hd & SCH— e EdRE, K HIRE read intr () B¢
write intr Q) pRZulik. (kernel/blk drv/hd.c)
JE edx FAFAIGHKE do_hd 4REIAEHE Ay NULL.
testl %edx, %edx # MR R e ST N Nulls
jne 1f # 2, NS48 C PA%L unexpected hd interrupt ().
movl $ unexpected hd interrupt,%edx # (kernel/blk drv/hdc, 237).
1: outb %al, $0x20 # % 8259A KIS BOT $74 (S5 RBE I
call *%edx # “interesting” way of handling intr.
pop %fs # FAJAH do hd 35 M 1 C k.
pop %es
pop %ds

- 100 -

5.5 system call.s &%

247
248
249

251

268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285

popl %edx
popl %ecx
popl %eax
iret

#it int38 — (int 0x26) FALIKBNEs WA BERE 7>, oo N A4 Hh B Sk TRQ6.

HANHE RS B E A A A B A —FE. (kernel/blk drv/floppy.c) .

OB SG I 8259A H K IR i A K I% BOT $84, ARJGHUA E do_floppy IR BHREN N eax

fEseh, JEE do floppy b NULL, 35 HIWT eax BEFRE 2 2. WHE, ML eax RIS M)

unexpected floppy interrupt (), HTFE/REHEFEE. BEAEAM eax 35K EL: rw_interrupt
seek interrupt,recal interrupt,reset interrupt i{ unexpected floppy interrupt.
_floppy interrupt:

pushl %eax

pushl %ecx

pushl %edx

push %ds

push %es

push %fs

movl $0x10, %eax # ds, es B ANWIZEIREL.

mov %ax, %ds

mov %ax, %es

movl $0x17, %eax # s B AHHEF RS ETRE.
mov %ax, %fs

movb $0x20, %al # 3% 8259A I IS BOT #74 (S5 RBE I
outb %al, $0x20 # EOI to interrupt controller #1
xorl %eax, %eax

xchgl do floppy,%eax # do floppy K—eREHREN, WP PR C R ERE Y,
JHE| eax TAFAYEHUR do_floppy FRENASEE 4.
testl %eax, %eax # WK R A FRE & R =NULL?
jne 1f # 52, NWMEFRE48 M C BR%L unexpected floppy interrupt().
movl $ unexpected floppy interrupt, %eax
1: call *%eax # “interesting” way of handling intr
pop %fs # A do floppy F8MIHIERZEL.
pop %es
pop %ds

popl %edx
popl %ecx
popl %eax
iret

gt int 39 —— (int 0x27) JHATEhWTACBERE S, X R AEAF b g kA5 5 TRQ7.
AR WIS ARSI, X LR R I% BOT 484 .
_parallel interrupt:

pushl %eax

movb $0x20, %al

outb %al, $0x20

popl %eax

iret

- 101 -

5.6 mktime.c F&/7

55.3HEER

5.5.3.1 GNU iC&miZE58Y 32 i Fut A58
K AT&T [V GiE S8, 32 7 -k IE g 284 -

AT&T: immed32(basepointer, indexpointer, indexscale)
Intel: [basepointer + indexpointer*indexscal + immed32]

2 T A B 5 0k . immed32 + basepointer + indexpointer * indexscale
FEN N, FEATHES 1T X 7B, {H immed32 Fl1 basepointer 2 b4 —MEfE. LLRE—
L/
o X —MEEM C i1l F &R Gk
AT&T: booga Intel: [_booga]
T AR TR NEg R P32 S (42)R) C A% (booga) i) /7 ik
0 X ZF A7 dw N AEFR) HO A7 B Sk
AT&T: (%eax) Intel: [eax]
0 JH 1L 75 A7 &5 TN B N FEIE T Il A
AT&T: variable(%eax) Intel: [eax + _variable]
o 7E— M S hk—ME CLLBIER 4):
AT&T: _array(,%eax,4) Intel: [eax*4 + _array]
o il F 4K kA A -
X CHH: *(p+l) Horb p 2 TATITEEE char *
AT&T: N AT&T #3: 1(%eax) H:rF eax H12 p MIMH. Intel: [eax+1]
0 fE— A 8 A MIFK A T F AR 74T Horp eax P2 E ML TT, ebx TR ET
FAAE T B I AZ A
AT&T: _array(%ebx,%eax,8) Intel: [ebx + eax*8 + _array]

5.6 mktime.c 125

5.6.1 LRt
SR AR mktime(), DU PURAET. TSN 1970 45 1 H 1 H O INGEEITFHL 4 1 28t
R (SPIR NN AT

5.6.2 K31
FIFE 5.5 linux/kernel/mktime. c ¥2JF

/¥

* linux/kernel/mktime. c

*

* (C) 1991 Linus Torvalds
*/

oY O [o DD =

- 102 -

5.6 mktime.c F&/7

#include <time.h> // WA, 58 T FRE I TR EE 54 tm All— L840 P[] pR B0 2

J*

* This isn’t the library routine, it is only used in the kernel.

* as such, we don’t care about years<l970 etc, but assume everything

* 1s ok. Similarly, 17 etc is happily ignored. We just do everything

* as easily as possible. Let’s find something public for the library

* routines (although I think minix times is public).

*/
/¥

* PS. I hate whoever though up the year 1970 — couldn’t they have gotten

* a leap—year instead? I also hate Gregorius, pope or no. I'm grumpy.

*/
/%

* XAEEREL, CAUENAET . BUEERAIA GO /N T 1970 SERFEAR A, (B E —UIIRIER
* [RAE, IR DX3K TZ [AR 2 200 o FRATT B R AT BE a7 S i A 38 (1) o B BB R B — 28 A TT 1V 2 pR £
* OREIRINK minix PN EREE ATFD

* oAb, MBS RE 1970 SFIFERIIN — MEEAATRASGEIE BN — N TEFETFLR? A B &R 7
* DI, FH, BAAHALET . TENRTREA.

el el el el bl Ll el el
|© |oo |\1 |G: |o-| |»-J> |c.o|l\:>|>—‘|o [Rel[elEN]

*/
20 #define MINUTE 60 // 1o Rb .
21 #define HOUR (60%MINUTE) // 1N EIRP L
22 #define DAY (24%HOUR) // 1 RIFDEL
23 #define YEAR (365%DAY) // 1R

25 /* Interestingly, we assume leap-years */

/% BRI IS T HE */

// R CVER AR, 5 SCT /AN HITF U I F R 5y 1) £ 4 .
26 static int month[12] = {

27 0,

28 DAY (31),

29 DAY* (31+29),

30 DAY* (31+29+31),

31 DAY (31+29+31+30),

32 DAY* (31+29+31+30+31),

33 DAY* (31+29+31+30+31+30),

34 DAY* (31+29+31+30+31+30+31),

35 DAY* (31+29+31+30+31+30+31+31),

36 DAY* (31+29+31+30+31+30+31+31+30),

37 DAY* (31+29+31+30+31+30+31+31+30+31),
38 DAY* (31+29+31+30+31+30+31+31+30+31+30)
39 };

40

O/ EEREGEEN 1970 4E 1T 1 H 0 IR BTN H 2 R 1 TEHLIR .

41 long kernel mktime(struct tm * tm)

42

43 long res;

44 int year;

45

46 year = tm—>tm year — 70; // N T0 SERI AR 20t FAEE (2 AR T)

// RS 2000 4E (1) .
47 /* magic offsets (y+1) needed to get leapyears right. */
/% T ARG AR, X B R AN LI WA (v+1) %/

- 103 -

5.7 sched. ¢ P27

48 res = YEAR*year + DAYk ((year+l)/4); // IXESAELR IR E[A] + FEANEERZ 1K
49 res += month[tm—>tm mon]; // WIRPECNT), A5 AR H R AL
50 /* and (y+2) here. If it wasn’t a leap—year, we have to adjust */

/% VIR (y42) o W (y42) AGE A, ISATRM Db 2047 PR 4L (G 2 — RIGFP N TH]) o %/

51 if (tm—>tm mon>1 && ((year+2)%4))

52 res —= DAY;

53 res += DAY* (tm—>tm mday-1) ; [/ BEINEAS i 2 (0 R A R 1A

54 res += HOURktm—>tm hour; ARy NSV S U PN RN RE Gk U G s

55 res += MINUTE*tm—>tm min; /) BEINE 1 NI I 2 R e B A R 1)
56 res += tm—>tm_sec; J/ BRI B R

57 return res; // BIVEET N 1970 4F LR 2 I i FDE N A o
58 }

59

56.3 HEEFER

5.6.3.1 HEMEMITES*
A AR 5 e
IRy RERE 4)L HORRERE 100 U, R Agbl 400 R, W)y 2 4.

5.7 sched.c #]F

5.7.1 ThEeHE A

sched.c & P A% A7 AT 55 2 R B0 R, LA B 38 A O T 11 36 S o% £ (sleep_on . wakeup
schedule %) LA K — 26 PRI R G0 B0 (Eban getpid()). 4 Linus 24 T 4afEi iy {d, 2 B8 38 oK
B A B e N T2, AR AR AR I LA R U R T 1K L

XU EA R B BARAK:, HESH%, TRl LB . et 1R 22 BOoR e i fd e
ARG AE, DRI A28 FUe P AR IR L s B e o IR S e 2R I E S Rb 0 &, A5 B
W B2 T O, X BLAON1H BE R %L schedule() /L4351

schedule() BR £ 56X BT AAESS CHERS) BEATALIN, MR —ANCEMBNE 5 1IMES . BiEJrike
EFRHTSS B P BT SS, BB AR S I alarm. WHRATS5H alarm 15 1i) ©40 54 W (alarm<jiffies),
WLEE 55 B B SIGALRM 155, SR i alarm {5 . jiffies & RZEMITHLIT U L 375 2% 10ms/
W% o1& sched.h g o WIRHEREME S0 BItP Br 2 FHIE S SAb e e G 5, JF HARS 4T
AR RTEARIR A (TASK_INTERRUPTIBLE) , NI'EATS Amh4hik#& (TASK_RUNNING) .

B I 2 VR R BRI AZ o AR B 4 o 3K 8 0 A R AR AR BE 2 P I 0]y R SE B BE LA, ek ¢ b 2
PATIAES o & B SR AT B AL T I T AT 55, AP RN S8 AT 45 F8) R AT I TA) (148 counter,
RO R) —MTESs, FARIH switch_to() BRI BZAT55 . A T A AT S A A T2,
TR A AT 55 BN 8] # D483z AT 58, T RIMARIE AT 25 L Se AU priority, B REAMESISATIN
i) 7 counter, T BB AT IGFAS 2 BT AT 45 IO PRAT I 1) {1

T MES IR UL sleep_on(), i%pRALEARIRRE, HIEELL schedule() R B EEAH . IX LA KR
(ITTEMEMERE . TR, sleep_on() R M) FEEDhAEE M — AR (BAT45) i sk i) B iEAT BA
FENAEH IR D)3 25, USRS R — BEI TR D03k G PRk RIS AT . N SERE A1)
Ji SR T R tmp FREME N S AN IEE ST S IR .

BB R A B SAMT SR EH R ME: *p. tmp H current, *p 24 RASSLIGEE, ST RGN AT
| wait FREF . NAEZE MR ERAE) buffer_wait FREFEE; tmp ZIGIFRER: current J& 4TSS 455 .

- 104 -

5.7 sched. ¢ P27

XTI EEAREAE WA I ASAL T DL ERATTRT LAUAT R i s B3] (B 5,50 B IR AR N A7 7107
71

HEN R B3
tmp PN /\current
1 I % 2 55 S| o
JRAERFAESS MRS
P schedule () I
tmp *p \ /\current
o] o7 % 7 8 § o

MHALSS

\/ BT 4

E5.5 sleep on() EREHIEHTHRER.

HNIBENZ RN, SISk ARE*p 48 [CAAEERF SR AR5 S0 IR HIA AT). 28R,
FERGNITIGHATI, SRS BT AAEST o IR L I) SR A AL S5 AE W TT AR IR AN AE R, BRI
*p 4R NULL. JERLAREHRAE, ERTMER P AT, BABISKIREHFG 10 T AR5 450, 1 ek 80 (11l
IR tmp 510 TSR . ANTIEL G IR EHAVE], R PR B T, Ry it b s
FUH—ADEERF RS R HIE 5.6 1, FRATRTLASE A 5 B sleep_on() i BS54 BABIE Bt FE .
HZRHE T 2 1] BAA SR RN 26 = ME S I TG D

mscreige [Too HREF Tmp $tF Tmp (NULL)
B Sk FREE
buffer ;ait AT S5 A4 2 AT 1
B current task2 taskl
{E55- 4514 task

5.6 sleep_on() EREMIFRRIESZFFHIT.

WA A% interruptible_sleep_on(), ‘& IM&5H)5 sleep_on()FIZEARIAL, FURLEIATIRE 2 e dt
MRS B T AT WEERRIR S, IRAE AT A Bl e i Jo iR 75 B A A R R ORI AT 55, A, W
WREEEAPEIEAT fENE 0.12 JFG, XA REE & — b —, (RS RSV A SHCKRIX 73 X PR E

Ulo
LEBERA S AREEIN - Bl RN 225615 30 include/kernel/sched.h SCPFAT RVERE, LA S M

Mo T A AL I LR

5.7.2 REGER
5Iz% 5.6 linux/kernel/sched. c ¥2fF

- 105 -

5.7 sched. ¢ P27

— = =
|l\‘> |»—‘ |O |© |00 |2 | |01 [[DO [

—
w

Slelzls s

|13 =
DO | —

| N~}
o~

37
38
39
40
41
42
43

*%%}

©
*/

J*

linux/kernel/sched. ¢

1991 Linus Torvalds

* 'sched. ¢’ is the main kernel file. It contains scheduling primitives
* (sleep on, wakeup, schedule etc) as well as a number of simple system

* call

functions (type getpid(), which just extracts a field from

* current—task

*/
/%

* " sche

d. ¢’ EEBWPAZ A, HPaREE R EFEA RS (sleep_on. wakeup. schedule %5) DL

* —USERA RGO R (Ll getpid O, AUMCURIAES TR A TBO

*/

#tinclude

#tinclude
#tinclude
#tinclude
#tinclude
#tinclude
#tinclude

#include

fidefine

fidefine

{linux/sched. h> // AL, X TAEE 4R task structs 3 1 MRS
/) BV . A e DL e e A R IR R S A0 B AR
// RN I G bR BRE
{linux/kernel.h> // WHZkCH. & S5 H B0 U8 2 .
<linux/sys. h> /] RGPS, SH T2 ARG C REUEER T, LU sys ko
linux/fdreg.h> // #IKKICAF. S REIRHIEESEG— e L.
<asm/system. h> // RGKICAF. 8 LT REBE SRR/ W 1S RN S 0 7%
<asm/io. h> // i Sk3CAF. e SCHEAF 5N/ 2 e R
<asm/segment. h> // BIAERSCMF. & T A KB A A7 a iV I i A\ X304t R 5K

{signal.h> /)G G S SRS, sigaction 5Ky, HRAE R BUR AL,

S(nr) (1K<((ar)-1)) // BUES nr 7645 AL B ok AT i — 3ERIEUE . 15 595 1-32.
// LhtfES 5 AT EEE = 1<<(5-1) = 16 = 00010000b,

BLOCKABLE (™ (_S(SIGKILL) | _S(SIGSTOP))) // B&T SIGKILL Fl SIGSTOP 55 LAZPIL & #R 2

// AIPHZERY (-++10111111111011111111b) .

[/ SRS nr (HERE . BERRIRES A WA HER SR A CRZD .

w task (int nr, struct task struct * p)

void sho

{

}

int i, j = 4096-sizeof (struct task struct):

printk ("%d: pid=%d, state=%d, ~ nr,p->pid, p—>state);

i=0;

while (i<j && ! ((char %) (p+1)) [i]) // #il¥g e T Eda 4 LUEST 0 174
it+;

printk(“%d (of %d) chars free in kernel stack|n\r’, i, j);

/) BIRFTELS TS RS SRDRER WAZMER SN 15450 CRZD .
w stat (void)

void sho

{

int 1i;

for (i=0;i<NR_TASKS;i++) // NR TASKS & RZ AR M RNIUFE (T HE 641 ,
if (task[il) // B XAE include/kernel/sched. h Zf 4 17.
show task(i, task[i]);

- 106 -

5.7 sched. c f&J¥

44
45
16
47
48
49
50
51
52
53
54
55
56
57
58
59
60

77
78
79
80
81
82
83
84
85

}

/) E SR T R A RO .

#define LATCH (1193180/HZ)

extern void mem use(void); [/ (221 E A 7 g A5 Z 5.

extern int timer interrupt(void); // W4frp Wb RFEE (kernel/system call. s, 176) .

extern int system call (void); // REGAA T W AR (kernel/system call. s, 80) .

union task union { /) € ST WA (E45 45 F i B3 stack PR B RE R R 0Y) o
struct task struct task; // BC—AMESEAR S5 5 HHEHIIAE R — W Ar oo, Birbh
char stack[PAGE SIZE]; /] MWHERR B 27 4748 ss n] DLSRIG s BUE B 15

b

static union task union init task = {INIT TASK,}: // & XWIUEE50050 (sched. h),

long volatile jiffies=0; /) MWFFHUF R PR BN TR (10ms/ 25

// HHRIFRGERF volatile, JESCMRREZ LA, ARGEREE. XHEZER gee AEXHZAEIATILL
/) BEER, WANEIRAAIE, KOV R R e HOfE .

61 long startup time=0; // JFHU AL, A 1970:0:0:0 JTAATHIN AP
62 struct task struct *current = &(init task. task); // METEE$EEN (WG AVIGETS) .

struct task struct *last task used math = NULL; // {#H i phabPR28F 45 HF84T

struct task struct * task[NR TASKS] = {&(init task.task), }; // & X454

67 long user stack [PAGE SIZE>>2 1 ; // & XRGHEATRE, 4K, $REHRIERIG i,

[/ ARG TR E SR ssesp (Bl BUEEERT, 48%E) . MWohead. s, #2317,
struct {

long * a;

short b;

} stack start = { & user stack [PAGE SIZE>>2] , 0x10 };

J*

* ’math state restore()’ saves the current math information in the

* old math state array, and gets the new ones from the current task

*/

/%

* B Y AT TR EE AR A AR B Z UMb BRSPS S, IRR ST S P AL 3%

* AN b B o

*/

/) AT WOREAS L UG, SR B DR BT S I A FE3R S (BRSO R E BRIk 1
[/ ARSI AL B ER HATIRES

void math state restore()
{
if (last_task used math == current) // WIHRATSEAENR B (E—AMES e M S) .
return; // IR b MES T S NI A e 2 AT
_asm__(“fwait”); [/ AERE AL FLES iy A 2 BT EE 58 K WALT $5 %
if (last task used math) { /) WHR EAMESATH T Wb 2RSS, WIRAFIDIRES .

~asm_ ("fnsave %07:: “m” (last task used math->tss. i387));

}
last task used math=current; // BifE, last task used math 5[HRT(E45,
/) VLA AT S A et oA

- 107 -

5.7 sched. ¢ P27

86 if (current—>used math) { [/ WRCH RS I AL BRSO RS
87 ~asm__("frstor %07 : “m” (current—>tss. i387)) ;

88 } else { // A5 WS U B 5 — A,

89 _asm_ ("fninit”::); /) TR R AR B A R WA A

90 current—>used math=1; [/ FEEAH T A B A AR

91 }

92 }

93

94 /%

95 * ’schedule()’ is the scheduler function. This is GOOD CODE! There

96 * probably won’t be any reason to change this, as it should work well

97 # in all circumstances (ie gives IO0-hound processes good response etc).

98 # The one thing you might take a look at is the signal-handler code here.

99

100 * NOTE!! Task 0 is the ’idle’ task, which gets called when no other

101 # tasks can run. It can not be killed, and it cannot sleep. The ’state’

102 * information in task[0] is never used.

103 #/
/%
* " schedule) /AL XIEMRIFHACD ! BT B ke 3B NG RS BT RAEE AT 1Y
* MR TAE (LLinpefexy 104 S A BARGF MmN 25D o A — e B E, BExRiES
* ALHERACHD
xR AR 0 RANHE C idle’)RS, RAUERA ST LIS T A A e . BRI R
* Fh, WAREHEAR. 1145 0 PEPIREFE R state’ EMRAH .

*/
104 void schedule (void)
105 {
106 int i, next, c;
107 struct task struct *k p; /] ARG SRR E AR
108

109 /* check alarm wake up any interruptible tasks that have got a signal */
/% K alarm CEEREMIHRE EIED , MeBRATA] A3 25 5 1 n] W T4 */

—_
(e}

1

[/ WS i 5 — AMES TR alarm,
for(p = &LAST TASK ; p > &FIRST TASK ; —p)
if (kp)
// AT S5 1) alarm I8 © 280] (alarm<jiffies), WFE(E SO & SIGALRM {55, #R)515 alarm.
// jiffies J& RGN FFHIIFIEE A M E (10ms/ W) o & XA sched. h 4 139 47,

—_
—_
—_

—_
—
[N

113 if ((#p)—>alarm & (kp)—>alarm < jiffies) {

114 (¢p)—>signal |= (1<<(SIGALRM-1)):
115 (kp)—>alarm = 0;

116 }

[/ WG A E P R PR ZE G S M e fE S, FFHARS A Trrh ek, WEATS ik,
// HAv ™ (CBLOCKABLE & (*p)—>blocked)’ F-F Zms i BHZE {55, {H SIGKILL 1 SIGSTOP AN fE 4 FHL.ZE

117 if (((xp)->signal & ~(BLOCKABLE & (%p)->blocked)) &&

118 (#p) —>state==TASK_INTERRUPTIBLE)

119 (*p) —>state=TASK RUNNING; // BN CTHAT) RS
120 }

121

122 /* this is the scheduler proper: */
/% X U R0 R 2 */

@ while (1) {

- 108 -

5.7 sched. ¢ P27

125 c = —1;

126 next = 0;

127 i = NR _TASKS;

128 p = &task[NR TASKS];

// X BARRG A MAT S A 1 G — AME S THG TR A A B, IR A BT 45 (A 4R . LhEs Rt 2
[/ RS SH counter (LESIZATRS ARG Z VI E0 E, W—AMEKR, BATHEEARE, next &t
// TR TS S .

129 while (—i) {

130 if (l%=—p)

131 continue;

132 if ((*p)->state == TASK RUNNING && (*p)—>counter > c)
133 ¢ = (*p)—>counter, next = i;

134 }

// RIS G counter KT 0 pUZE S, WERH 124 AT TR HITEIA, BATAES DI (141 47D &
if (c) break;

[/ A NSRRI BT S AR SEBUE, SR — M5 counter {H, 2RJ5 I3 125 17557 LLE .

// counter {HI+HH J73 N counter = counter /2 + priority. [£iZ counter=0??]

—
(Sa]

136 for (p = &LAST TASK ; p > &FIRST TASK ; ——p)

137 if (kp)

138 (kp)—>counter = ((*p)->counter >> 1) +
139 (*p) —>priority;

140 }

141 switch to(next); // PIBMES S N next S, FHiBITZ .
142 }

143

//// pause) RGP o F# AHIAT S PR ol b B S ApRES, JFEBiRE .

[/ ARG S BRI A RRIRIRES, HEE—ME 5. M5 5 H T2k s g fE 8 H

[/ —AME SRR WA AR T A, RS SR B R EOR [P, pause O A 2R [A

// Wi pause O IR [EME NV %t -1, If H. errno #% & 4 EINTR. 3X HUEEAT 764 SEL (L3 0.95 /O
144 int sys pause(void)

145 {

146 current—>state = TASK INTERRUPTIBLE;
147 schedule () ;

148 return 0;

149 }

150

)/ NS AN I S AR, I LRI BB S RO R 4 BT
[/ A I I A 2R [Pl R B T RS v AR B Y 2 TR R P HL
/] RS Heep TR SFAHESS Bk AG . (BRG] .

151 void sleep on(struct task struct *#p)
152 {
153 struct task struct *tmp;
154
/) FEFREF R, WIEH . (FREFFTIRIGAT S AT L& NULL, (HIREF ARG ASH 0) .
155 if (!p)
156 return;
157 if (current == &(init_task. task)) // WIHRMFATS LTS 0, NHEHL (impossible!) .
158 panic (“task/0] trying to sleep”);
159 tmp = *p; // Ak tmp $8) AR A BT S5 (Un AT 1) .
160 *p = current; // FHERIRBA 1 Sk R SR R 4 1m) W55
161 current—>state = TASK UNINTERRUPTIBLE; // ¥ 4HifT45 & 4 A] th W7 25 AR 45
162 schedule () ; // T

/) RIS eI, R A SGR IR E, R R 40 W) bt e

- 109 -

5.7 sched. ¢ P27

/] BRIR RS HRAE SR R R B0, IS AAE G U] RIS A o S R i A7 S A BE IR 0 R o PR AL
/BT, M EM T S 2RI . RS RS IX SR A S A1, BT
/) Rz E AN BERE AT B BRI SRR S G

163 if (tmp) /] FICALAEER TS, MR LS D 20IRES (i)
164 tmp—>state=0;

165 }

166

) RN BT T S PR, ROk SR ST 2B IE AT sTeep on () KITW .

167 void interruptible sleep on(struct task struct *#*p)

168
169 struct task struct *tmp;

170

171 if (!p)

172 return;

173 if (current == &(init_task. task))

174 panic (“task/0] trying to sleep”);
175 tmp=*p;

176 *p=current;

177 repeat: current—>state = TASK INTERRUPTIBLE;

178 schedule () ;

/1 WREERF S P IEATSERAAT S5, I HAB KRBT BIR [0 AL S5 AL 55 I, MRS R T 55 BN
[/ BT AR, JFEOH AT R o 48 Esp Prai 1) AAN I TR S5 I, SRORAE B 55408
[/ NOIE, XATE RS BARAER S, Rk, BESRAAESS R rI bR, At % s ST irfy
/] FEEERES

179 if (%p && *p != current) {

180 (%kp). state=0;

181 goto repeat;

182)
/) NI R, NiZsdkp = tmp, EBASSKIREE 0 R ERHAESS, AR S AR5 2 Tl A
/] ER IR S ek 1. 2 LK 4. 3,

183 *p=NULL;

184 if (tmp)

185 tmp—>state=0;

186 }

187

// VPR EAT S5 %D
188 void wake up(struct task struct *#p)
189
190 if (p & *p) {
191 (wkp). state=0; // BN (Wia17) RE.
192 *p=NULL;
193)
194)
195
196 /#*
197 #* OK, here are some floppy things that shouldn’t be in the kernel
198 #* proper. They are here because the floppy needs a timer, and this
199 # was the easiest way of doing it.
200 #/
/%
* 1T, MWK B IR — S SR B FRET . AN AZTE WAL I FE 250). e D EIX
o R ROR T B — N Bh, TR X B B T TR TR
*/

- 110 -

5.7 sched. ¢ P27

201 static struct task struct * wait motor[4] = {NULL, NULL, NULL, NULL} ;
202 static int mon timer[4]={0,0,0, 0} ;
203 static int moff timer[4]={0,0,0, 0} ;
204 unsigned char current DOR = 0x0C; // U7yt 274745 (WIME: AVF DMA FERrp . J53h FDC) -
205
[/ ¥R AL BNEF IS FARZS T T IR B () .
// nr — IR (0-3), R[FMEATEEE.
206 int ticks to floppy on(unsigned int nr)

207 {
208 extern unsigned char selected; // HETE TP 9SS (kernel/blk drv/floppy. ¢, 122) .
209 unsigned char mask = 0x10 << nr; // By W ECF 4 H 27 A2 4% 0 8 8)) Tk EEREA7
210
211 if (nr>3)
212 panic (“Floppy on: nr>37); // W% 4 NRIK.
213 moff timer[nr]=10000; /* 100 s = very big :—) */
214 cli(); /% use floppy off to turn it off */
215 mask |= current DOR;
/) WRASE TR,)R S A e IR B BT, AR i BT Y B ORI A
216 if (!selected) {
217 mask &= 0xFC;
218 mask |= nr;
21 }

// AR A A AR I A A S EERIE AN R, W) FDC 5074 H i 1 4 BT (mask) o FF HLAn i
/) BERIA BN IR EAT A B, B AR N AR ik G B e AR (HZ/2 = 0.5 Fhak 50 MEE) .
// B JE B B S A AT A E current DOR.

220 if (mask != current DOR) {

221 outb (mask, FD DOR) ;

222 if ((mask ~ current DOR) & 0xfO0)
223 mon timer[nr] = HZ/2;
224 else if (mon timer[nr] < 2)
225 mon timer[nr] = 2;
226 current DOR = mask;

227 }

228 stiQ;

229 return mon timer[nr];

230)

231

// SRR Rk B A 1A
232 void floppy on(unsigned int nr)

233 {

234 cli(O; /7 K.

235 while (ticks to floppy on(nr)) // WIREIEHZENEEE], M EHLAEERE
236 sleep on(nr+wait motor); // JAH A WIHEMIR A F N SG45 S ikis 1T S
237 sti(O; // FFi.

238 }

23

/) EIRPRHNARIK B iA (e g N e (3 D)
240 void floppy off (unsigned int nr)
241 {
242 moff timer[nr]=3*HZ;
243 }
244
/) A E N AR RREY o BB Sk S B I BN D5 G P R T I o 1% R T R AR I B I

- 111 -

5.7 sched. ¢ P27

/7 WAL, IR AN (10ms) Bl F — 0k, BB Sk T R B 4 5 I g R 2R

[/ AN IEATE R e R, DUDKE T g S A AT Ak e B A
245 void do floppy timer (void)

246 {

247 int i;

248 unsigned char mask = 0x10;

249

250 for (i=0 ; i<4 ; i++,mask <<= 1) {

251 if (! (mask & current DOR)) // WRANIE DOR 45 5€ 1 Sk kit .
252 continue;

253 if (mon timer[i]) {

254 if (!--mon_ timer[il)

255 wake up (i+wait motor); // WIRHIEJAB)E I £ WM BEEFE
256 } else if (Imoff timer[i]) f{ // B R kA e s i 3)

257 current DOR &= “mask; /) BN Sk HE, I

258 outb (current DOR, FD_DOR) ; // T AR,

259 } else

260 moff timer[i]--; /) IR I i ko

261 }

262 }

263

264 #define TIME REQUESTS 64 /] WZAA 64 A ENSEER (64 MES S

265

[/ eI AR SR A E N SR EUA
266 static struct timer list {

267 long jiffies; /] EWTEE
268 void (*fn) () ; /) ER AR .
269 struct timer list * next; /) T NERER.
270 } timer 1list[TIME REQUESTS], * next timer = NULL;

271

__VV%WEW%Oﬁk%ﬁﬁ%%%ﬁﬁﬁ@%%@ﬁm@%ﬁ@&%%ﬁo
// jiffies - LL10 ZFPUFI L *0n O~ i I R 20 i S04 T 1 bR 2K
272 void add timer (long jiffies, void (¥fn) (void))

273 {
274 struct timer list * p;
275
/) IRSER PR HRE A, AR H .
276 if (!fn)
277 return;
27 cli();

// TR ERE<=0, WIS A AR . JF HaZw A A IR

279 if (jiffies <= 0)
280 (fn) O ;
281 else {
[/ WERE AL, A NI
282 for (p = timer list ; p < timer list + TIME REQUESTS ;
283 if (!p—>fn)
284 break;
[/ R AT T e N, WARSHBO.
285 if (p >= timer list + TIME REQUESTS)
286 panic ("No more time requests free”);
// T E IS B SR NG B IFRE R Sk
287 p—~>fn = fn;

- 112 -

p++)

5.7 sched. ¢ P27

288 p—>jiffies = jiffies;
289 p—>next = next timer;
290 next timer = p;

[/ BERIILGE BN BIHER? o FEHE P I 25 HIEAE BT 5 2 B A, XA A AR B I 2 I B 2
/) BERERKIEE —TURE 2R BHEI AT . [[20 XBUFEPIF QWA % 18 4. dn OB N 14 & I
[/ AAE < JEORSk—AME N EHE I, %R FTAT T 58 A2 B K2 1 AN E .]

291 while (p—>next && p—>next—>jiffies < p—>jiffies) {
292 p—>jiffies —= p—>next—>jiffies;
293 fn = p—>fn;

294 p—>fn = p—>next—>fn;

295 p—next—>fn = fn;

296 jiffies = p—>jiffies;

297 p—>jiffies = p—>next—>jiffies;
298 p—onext—>jiffies = jiffies;
299 p = p—rnext;

300)

301 }

302 stiQ;

303 }

304

//// BHERh il C BB RS, fF kernel/system call.s Jff] timer interrupt (176 47) #:iEH.
[/ B epl YRR 0 8% 3, 0 KR AZACTEAEIIAT .
[/ RN R T HAT I A e, WA TR S Dl o FERAT —AN VT I SE 8T TAE .

305 void do timer (long cpl)

306 {

307 extern int beepcount; // %5 #ak 7 W% (kernel/chr drv/console. ¢, 697)
308 extern void sysbeepstop (void); // FM3%H 2% (kernel/chr drv/console. ¢, 691)
309

/)RR R AR, WCHIR . () 0x61 RS M 4, AL 0 Fl 1. 47 0 451 8253
/) s 2 MR, A TR RS -

310 if (beepcount)

311 if (!-—beepcount)

312 sysheepstop () ;
313

[/ ISR (epl) 0 (dpermr, R ENZRETFAETAE) , WP B Fig i Ia) stime 514,
// W epl > 0, WK E B RETELE, B utine.

314 if (cpl)

315 current—>utime++;
316 else

317 current—>stime++;
318

[/ WRAT R BE I e A A, PR RS | AN g NS Aok 1o SR 55 T 0, D3R A N A b 2
[/ RERF, PR A B PR R BN A . AR R IIUE N

319 if (next timer) { // next_timer &€ #$EER I LFeE (L 270 1T) .
320 next timer—>jiffies—;

321 while (next timer && next timer—>jiffies <= 0) {

322 void (kfn) (void); // XHIHAT DR EFREHEX! 1 1 ®

323

324 fn = next timer—>fn;

325 next timer—>fn = NULL;

326 next timer = next timer—>next;

327 (fn) O ; // AL P R K

328 }

- 113 -

5.7 sched. ¢ P27

329 }
// USRI g FDC R H 7 2 A7 & TP Sk R AL EAL R, W BRAT B E I R (245 47) .

330 if (current DOR & 0xf0)

331 do floppy timer();

332 if ((--current->counter)>0) return; // WHRMFEIBATI LR SE, WERH .
333 current—>counter=0;

334 if (lepl) return; // XTEBHH I REIT, AMMB counter (HBAT I

335 schedule () ;

336 }

337

/) FRGEMAhRE — BCEARE E NI A (D) .

/) R e E L alarm 5, WHEREIHE, AR ME 0.
338 int sys alarm(long seconds)
339 {
340 int old = current—>alarm;

342 if (old)

343 old = (old - jiffies) / HZ;

344 current—>alarm = (seconds>0)? (jiffies+HZ*seconds) :0;
345 return (old);

346 }

// WCHHTHERE S pido
348 int sys getpid(void)
349 {
350 return current—>pid;
351 }

// B S ppid.
353 int sys getppid(void)
354 {
355 return current—>father;
356 }

/) BT uido
358 int sys_getuid(void)

359 {
360 return current—>uid;
361)
362

// B euid.
363 int sys geteuid(void)
364 {
365 return current—>euid;
366
367

// WS gids
368 int sys getgid(void)

369 {
370 return current—->gid;
371}
372
// B egid.

- 114 -

5.7 sched. ¢ P27

373 int sys getegid(void)
374 {
375 return current—>egid;
376 }
377
[/ BREVHThEE — BN CPU BIERAE N (CEASHE? ©) .
// MEAZBRE] increment KT 0, FRINIE, nlAEOLIERGE KL !
378 int sys nice(long increment)
379 {
380 if (current—>priority—increment>0)
381 current—>priority —= increment;
382 return 0;
383 }
384
// R ERE IR TR o
385 void sched init(void)

386 {
387 int i;
388 struct desc_struct * p; // RibSFFREHTRE
389
390 if (sizeof (struct sigaction) != 16) // sigaction s2ff/Bf7 AR T IRASHILEH
391 panic (“Struct sigaction MUST be 16 bytes”);
/) WEVMGES (155 0) PSR B IR TR S EE R /AR £F (include/asm/system. h, 65)
392 set _tss desc(gdt+FIRST TSS ENTRY, &(init task. task. tss));
393 set 1dt desc(gdt+FIRST LDT ENTRY, &(init task. task. 1dt)) ;
/) AR EAHMBR TR GER i=1 TR, FrUAWIaHA RS A FF e 1E)
394 p = gdt+2+FIRST TSS ENTRY;
395 for (i=1;i<NR_TASKS:i++) {
396 task[i] = NULL;
397 p—>a=p—>b=0;
398 ptt;
399 p—>a=p—>b=0;
400 ptt;
401 }

402 /* Clear NI, so that we won’t have troubles with that later on */
/% TERAR G TR T BT NT, XA AT IR */
// NT driE TSR R 8 (Nested Task) o 24 NT BEAZN, A4 24500 WiE4$AT
// iret A NS5 AT V)# . NT $8H TSS H#) back _link FBUE T H .

403 asm_ (“pushfl ; andl $Oxfrrrbfrr, (%esp) ; popfl”): // BALNT knik.
404 1tr (0) ; // FATS 0 1K) TSS INEEBT45 F 4788 tro
405 11dt (0) ; // B A A 2 N B R AR R R T AT A

// FEEY L R GDT HHAHRY LDT #IARFFER MR 1dtr. HEIHIMEIX—K, UL
// LDT [in#, & CPU AR#E TSS ¥ LDT Tl B 8Nk .

[/ R IEACKS T AR AL 8253 RE I 4.

406 outb_p(0x36, 0x43) ; /% binary, mode 3, LSB/MSB, ch 0 %/
407 outb p(LATCH & Oxff , 0x40); /* LSB */ // jEMHEARTY.
408 outb (LATCH >> 8 , 0x40) ; /% MSB #/ /) EWHE AT
// VBRI BERE R A CRCE R BT .
409 set_intr gate(0x20, &timer interrupt) ;
[/ B T s B, SR Bl
410 outb (inb_p(0x21)&"0x01, 0x21) ;

/) BCEARGHRI W

- 115 -

5.8 signal.c &%

S~
—
—

set system gate (0x80, &system call);

N
—
[\
—

S
—
w

57.3HEER

5.7.3.1 B BI=HI B mIE
CERFRIN BT 4 AIREL, SRR ANREA AR, AT 1.2M BB BT DU R e
l:l o

5. 3 AR IR0

/O 3 [5 R =

0x3f2 Hy B th A AR AR AR B A 4R)
0x3f4 Mk FDC T R&A /78

0x3f5 5 FDC $udi & f7- 4%

0x3f7 Mk BN

0x3f7 g TE B2) 27 A2 2% (PR H R 2 1)

et 0 CRUTEREG D g 8 (I AEA, B HIIKEER LA T . SRR R, HB
54 FDC A K SuVF/AE I DMA K b=k .

FDC B RS A A anth & —A 8 (T 7%, FH T IRk 454148 FDC R BLIKZ) 7% FDD 5 AR
Ao JlH, £ CPU] FDC Ri%kfn4 2 irsk A FDC SREUER S, B2 1, AR B IR A T A7 2 RS,
CLAI S HT FDC Hn 35 A7 e e, DASf e B AR 15 (10 7 1] o

FDC (WA oG XN 2 A2 fids (BRI GST A MSEa iy Mg 128, (AT —
2 LR — AP Ao I AE B it 11 Ox3f5. 7E V5 i) S R ZF A7 a8, FORASERHI DIO J5 [s 25
0 (CPU - FDC), Vi) iR f7gs i W) [e 2 o AEEHSSE By A1 FDC A2 G A S se 45 51,
WS R RZAH 77

BT HIB LT LI 15 e S ML I =ANEB: BB, BUTHY BOR 45 R B .

AP BUE CPU 1] FDC RIEM A T RIS ETFAT AR5 A IR — N7 BE fr A 77 (&),
HJGIRE 0--8 TS HL.

PATH B FDC $0AT A 208 I8 o ZEHATIY B CPU AN I, — 2t FDC & H b
TERIR A A HAT IS R . Wi CPU K H 1) FDC iy &)AL 4idi, W FDC] DL LI 777 20k DMA 7
AT T BRI 1775, DMA J5UE7E DMA #2858, FDC 5 N At T30 il &4
HAERTEHIALETE . I DMA #8188 2R A&fa 7 1 v 115 5l %0 FDC, fJ5 th FDC &t i
A5 54540 CPU $ATH BrgE .

SE R B th CPU X FDC HdE A7 4R [FME, M 3kTS FDC v S PAT 45 5 o 1 [45 S A 1
KR 0--7 745 WA R[PSS AR fdr 4, IR FDC KA I iR ay 2 SRR ERIRES .

5.8 signal.c f&fF

5.8.1 ThEEHEIA

ARFEFPE T BB RSB RS 5 PHIERS (R ARG 1A A B2 sys_ssetmask() 1 sys_sgetmask()-
5 5 HE R G sys_singal ()« 18 SOIERE AR B 2 15 5 N T R4 T 3 R G A sys_sigaction() BA A
1E R G T AL RS v AL PR S (1 pR K do_signal (). A 5515 SR E I R IR 5 B send_sig()RTIE %11

- 116 -

5.8 signal.c &%

SLHEFE AL tell_father)4 (0 5 76) — MFET (exite) o FEIFH IR FRATEE sig 52155 signal [fATAR .
signal() Ml sigaction() i) D A LLACIRABL, #8428 5 AL LA A9 Chandler s 4 b BEFE) o 1H signal ()
SR PE S A BN, I BAEFT CORRER] — 5 UMt 2 AL BIERAE. 1 sigaction())l LLIEAT
B IR BCE .
do_signal () BREUE A% ARG (int 0x80) T AL BRFE PP vh 45 5 IR TIAG B AR 77 o 2% bR 501 =6 L4 A2 0
T R B AN 2] 7 R HER T o XK, A8 AT RS0 45 AOR [R5 it 22 SEZIPAT A 5 Ui, R
Je PR ARSEAT P IR, LR 5.7 B

MR PR R S I T A B

AR int 0x80 WA D RER C
S BR AL TR T

WHE 5 34T U T
LUSLIN

P4 do_signal ()
vy o PR 55 b
AL B Fo i A B
F R

IRET

ES. 7 ESAEREFRIERAAR.

5.8.2 KGR
5%k 5.7 linux/kernel/signal. c 2%

JS*

*

linux/kernel/signal. c

*

(C) 1991 Linus Torvalds
*/

N[O [O1 I [DO [
*

#include <linux/sched.h> // VRAEEFEFLICHE, & L TALS 450 task structs HIZRITSS 0 %,
// A YA I RIA T S B0 B PR N 2T G bR B TR .

8 #include <linux/kernel.h> // WKL, &4 SN ILH T BB RE E o

9 #include <asm/segment.h> // Bt¥efEk3ctf. SE T A KRBT AT A BT B RN 2T G bR

10

11 #include <signal.h> /) AG TR B UG TR TR, AR T A DS T 1R R R A
12

13 volatile void do_exit(int error_code); // BIHIMIBRESRF volatile TR gn Bas AN HLIATHAL
14

/) SRBCHATESAE 5 B) (BRI
int sys sgetmask ()
{

[
(@]

return current—>blocked;

}

[=gtegliag =N

[/ WE BRI S BRI . SIGKILL ANREMBEM . IR [PIE SRS 5 kA .
20 int sys ssetmask (int newmask)
21 |

- 117 -

5.8 signal.c &%

22 int old=current—>blocked;

23

24 current—>blocked = newmask & " (1<<(SIGKILL-1)):
25 return old;

26 }

27

" // &l sigaction ¥R £s BHREL to &b, .

28 static inline void save old(char * from, char * to)

29 {

30 int i;

31

32 verify area(to, sizeof (struct sigaction)); // HiF to AbHIWNAF2E 2.

33 for (i=0 ; i< sizeof (struct sigaction) ; i++) {

34 put fs byte (kfrom, to) ; /) SR fs Bro —BU T BB
35 from++; // put fs byte()#F include/asm/segment. h H.
% tott;

37 }

38 }

39

// & sigaction Hdfi A\ £s Zidm B from {7 B B H] to 4.

40 static inline void get_new(char * from, char * to)

41 A

42 int i;

43

44 for (i=0 ; i< sizeof (struct sigaction) ; i++)

45 *(tot+) = get fs byte(fromt++) ;

46 }

47
// signal O ARG . KRBT sigaction Q. AFREME T LIEP G SN (G5O BEF) .
[/ AF SR AT DU P R e i R AL, e RT LU SIG DFL CERIARIARD BE SIG IGN (ZH%)
// ZH signum —47EM{E 5 handler — FREMIAIM; restorer - JEURET YHTHAT I HINEAL o
// BREGR PR 5 R

48 int sys signal (int signum, long handler, long restorer)

49 {

50 struct sigaction tmp;

51

52 if (signum<l || signum>32 || signum==SIGKILL) // {ZSfH%# (1-32) JoHEMN,

53 return -1; // FF HAGZ SIGKILL.

54 tmp. sa_handler = (void (¥) (int)) handler; // $RENME T AT .

55 tmp. sa_mask = 0; [/ AT I A 5 BRI o

56 tmp. sa_flags = SA_ONESHOT | SA NOMASK; // AR EAE R 1 05 s BRI,
// FERVHESIE A ORI A i 2

57 tmp. sa_restorer = (void (%) (void)) restorer; // {RFEiR[EIHubLE,

58 handler = (long) current—>sigaction[signum—1]. sa handler;

59 current—>sigaction[signum-1] = tmp;

60 return handler;

61)

62

// sigaction() RGWH . SCRHEREAEW R —AME S I FI4AE . signum 2&FR T SIGKILL LAAMUATAT
/) 55 LR action) A %) WIBFHRAEE 2288, W oldaction $HER N4, NIHME
// AR T oldaction. FEINMIR[FI 0, FHWA-1,

63 int sys sigaction(int signum, const struct sigaction * action,

64 struct sigaction * oldaction)

- 118 -

5.8 signal.c &%

65 {
66 struct sigaction tmp;
67
/) A TEEAE (1-32) YaFA, JF HAG 5 SIGKILL FAb B AN AN BER: R
68 if (signum<l || signum»32 || signum==SIGKILL)
69 return —1;
// TEA5 51 sigaction G5 BRI IERAE (BI1E)
70 tmp = current—>sigaction[signum-1];
71 get_new((char *) action,
72 (char *) (signum-l+current->sigaction));

// W oldaction FREFASN A MTE, WPK ERIRAEFREHRA7 2 oldaction PrfRIMALE
73 if (oldaction)

74 save old((char *) &tmp, (char *) oldaction);
// MR RRVHE S AE A ARG S a], WA BRlcs ok 0, 5 W BB E .
75 if (current—>sigaction[signum—1].sa flags & SA NOMASK)
76 current—>sigaction[signum—1]. sa _mask = 0;
77 else
78 current->sigaction[signum—1]. sa mask |= (1<<(signum-1));
79 return 0;
80 }
81

// RGVATRAABARF EIERE S BREF (FF kernel/system_call. s, 119 17) &
/) BRI 3 EAE R RS S AL AR R N B R HEAR T, JRTEAR RS 450K
// RBGSEZIBATE 5 AR, AR E GRS AT P R 7

82 void do_signal (long signr, long eax, long ebx, long ecx, long edx,

83 long fs, long es, long ds,

84 long eip, long cs, long eflags,

85 unsigned long * esp, long ss)

86 f{

87 unsigned long sa handler;

88 long old eip=eip;

89 struct sigaction * sa = current—>sigaction + signr — 1; //current->sigaction[signu-1].
90 int longs;

91 unsigned long * tmp esp;

92

93 sa_handler = (unsigned long) sa—>sa handler;

// WERAE S A4 STG_ TGN (Z1%) , WR[Fl Wik A4 STIG DFL (BRINAGEE) , 40 A5 = 2
// STGCHLD MR [A], 75 M2 1 HEFE IR AT

94 if (sa_handler==1)
95 return;
96 if (!sa_handler) {
97 if (signr==SIGCHLD)
98 return;
99 else
100 do_exit (1<<(signr-1)); // [?? WAt ALMESMIEAZE? At al?
©]
// IXHNIZRE do exit(1<<signr)).

101 }

/) ARAZAT G AR U], PR AR B 2 G2 A5 5 0 &R 474 sa_handler FiREF 1)
102 if (sa—>sa flags & SA ONESHOT)
103 sa->sa_handler = NULL;

)/ TR BT A AR A BT MR R, R sa restorer, signr, MEFEREMAD (1
// SA NOMASK ¥'Ef7), eax, ecx, edx YF S LL K st i F R G F IR 1R B FE 51 Mobr & 35 A7 2 H

- 119 -

5.8 signal.c &%

/) I ANHERK . DRIEAEAS I R GE I T R BT (0x80) 3 M AT/ R e I 4 B SE0AT FL T IS 5 Ui I, R
/] HAREEPATH R .

/7 KR ARG H AR FE S eip 48 A1ZAE 5 AL BE)

104 *(&eip) = sa handler;
[/ WRAVHE T A QRSB RRICENE T B O, TR T DR R 1 BH ZE A e A HEAR
105 longs = (sa—>sa flags & SA NOMASK) ?7:8;

// KRR B P AR SR B 10 R R 7 (08D MK JHRAFBGR G SIS 5
[/ IR AT D0 (90 G SR P A 500 2 S BT %)

106 *(&esp) —= longs;
107 verify area(esp, longs*4) ;

[/ AER P HERh NE 2] EAFIN sa restorer, {5 signr, BEAY blocked (W12 SA NOMASK EA7),
// eax, ecx, edx, eflags M &7 RACHL 484 .

108 tmp esp=esp;

109 put_fs long((long) sa—>sa restorer, tmp_esp++) ;
110 put_fs long(signr, tmp_esp++) ;

111 if (! (sa—>sa flags & SA NOMASK))

112 put fs long(current—>blocked, tmp _esp++) ;
113 put_fs long(eax, tmp_esp++) ;

114 put_fs long(ecx, tmp_esp++) ;

115 put_fs long(edx, tmp_esp++) ;

116 put_fs long(eflags, tmp_espt++) ;

117 put_fs long(old eip, tmp_esp++) ;

118 current—>blocked |= sa—>sa mask; // SEFEBHZERS (BEiichs) 75 I sa_mask HAIFSAT o
119 }

12

583 HEER

5.8.3.1 #H2IE SR

BRI 5 R R TRl 1 — ﬂwm%«% S B TR MRS HUE, I BT
e 4G B Bl — SRR OB gE R, S A AR5 o 17 1) SIGCHILD {55 KiX4A R
HERE, DB AN SRR A G T ERE I S IR

KPR E IS, — A PR — R REA 2403, x5 54
RGN VBRI 5 AR P REAT AL B 55 R AR A B OS5 BRI R A HEE 5

*5. 4 HEES

i HFR i NN
1 SIGHUP (Hangup) “4ARAS PR il 2 i A 25 7= AR 105 5, | (Abort) 4 B 42 i) o

o MR Xterm BT modem. BT o &R | Bk,
AN, BRineils H SIGUP ki Hs 2
FOFT O E S

2 SIGINT (Interrupt) K [B4 1 2K i o ﬁf‘“éﬁfiﬂﬁ%lzzb%ﬂ” F | (Abort) Z51ERE
HEAC Y85E .

3 SIGQUIT (Quit) K BB I Ly o T8 IR AR P o 3L S | (Dump) B2 7 4k 4500 JF
MNYRIE 774 dump core SCAH

4 SIGILL (Illegal Instruction) FE/ AT ELE AT T —NEEER) | (Dump) B2 578k 2500 JF
BAETR 2 77 dump core 1.

5 SIGTRAP (Breakpoint/Trace Trap) ik, EREAHT 5.

- 120 -

5.8 signal.c &%

6 SIGABRT (Abort) JHFTHAT, FH LA (Dump) F& 7 4 ¢ 1B 5F
72 dump core 1.
6 SIGIOT (10 Trap) [f] SIGABRT (Dump) F2 /7 4 ¢ 1E5F
72E dump core 1.
SIGUNUSED | (Unused) %11
SIGFPE (Floating Point Exception) V7 s 7% o (Dump) F& 7 4 ¢ 1E5F
72 dump core 1.

9 SIGKILL (Kill) FERP#Z b, M5 S A REBAm SR BE B 20E . | (Abort) FRIPHEZIL,
ML 22 E— AR, HURIEE S 9. R
AL MOE B LA

10 | SIGUSR1 (User defined Signal 1) /7 & LHIME 5 (Abort) HEFEHEZE,

11 | SIGSEGV (Segmentation Violation) %)% 5| GBI N £l 25 | (Dump) #2578 2% 10 9F
FEARMAE S thln: SRR A FHERVE | P4 dump core SCEES
AR NAE

12 | SIGUSR2 (User defined Signal 2) fRE45H 7 #2FH+ IPC 8 | (Abort) HEFE#Z L,
HeHM.

13 | SIGPIPE (Pipe) MF2)7 [— N EB T IES N HFBA 1 | (Abort) HEFEHZILE,
B

14 | SIGALRM (Alarm) Z{55 S/ A alarm RS PTE | (Abort) HEFEHEZ LR,
(IR RS E B Ja 77 A o 1245 55 TP F R GE 1 FH 8
o

15 | SIGTERM (Terminate) H-T-RI35 MR — MEF &b, E A kill | (Abort) BEFEHEZ L.
ERIME 5o 5 SIGKILL AN, %455 BEwkdliZh,
XPESREAEIE IS AT AU MO B T A .

16 SIGSTKFLT | (Stack fault on coprocessor) 1/pAbPE 3 HEFRE 5 (Abort) HEFEHEZ L.

17 | SIGCHLD (Child) ACHERE A& o A7 1REE TR . U SL | (Ignore) 1 J0E R 45 11 5%
o XAEE A . i

18 | SIGCONT (Continue) %5524 SIGSTOP {5 LB | (Continue) Pk 53 F& 1K)
1B1T . FTLARIR . AT

19 | SIGSTOP (Stop) 5 IEBEREIIZAT . 1A T ARk ANE . | (Stop) 45 1IEHERRIZAT

20 | SIGTSTP (Terminal Stop) [/ £ KEAF ISP 41 %455 LA | (Stop) 45 1EIEFRIZAT
Bl Al R B 2 o

21 | SIGTTIN (Terminal Input on Background) J& &5 EFE A A —> | (Stop) 15 IEREREIZAT .
AT P I) e o b R, B R
1k, BEEPME] SIGCONT 15 5. %17 5 v LA 3Rk
2%

22 | SIGTTOU (TTY Output on Background) J& &K A — A | (Stop) 5 IEREREIZAT

g St b As, PRz R A 1L
HEME] SIGCONT {5 5. %55 A W a2 mE .

- 121 -

5.9 exit.c ¥

5.9 exit.c F2FF

5.9.1 TheeHEA

R R TR (T4 LR B S . EEAS AR, o GERRAD 4k
FIFEFIE AL HE R A DL R PERERE . b b RE . R RS R G0 . IS FERERE 5 R % AL
send_sig() Al 0 A FE T HERE L 11 1Y R 2 tell_father()

R I s AL release() T: ZEMRIE TR E LSS B 4540 (AR5 HIRTT) 485, FEARSEA P MRS
SE MBEREFRE . BETBUHSC A A7 TOF L2 LE AR B R EAL 55 118 4T

ERRL 2 11 R A Kill_session () [23 15 5 55 24 BT HERE A R I ERE AR FEWTERE 10455

AU sys kil T R 3R AR E IS 5o RIS EL pid EEREARIRS) IBERAR,
GRS AN R SRR U RR AR 5 o REPERE R T2 T3 AN R 5 DL AL T 3

FEFFIR H AL P PR %Y do_exit() 275 R e AT A P T AR BERE e 8GR T 0 o & B Se S BB T RE R A AR
BRI BT b R N A7 DU, RS) FRE R ROR 2R A5 5 SIGCHLD . FA6 KM iR 4] T 1 iy
SCAES BB 280l e DMACBAS BEeE, i TR R BRI UK R, W R 24 T A%
R, B AT EONVESIRAS, WER Y, R LR A TR A LS S . RS iR
Bl AR5 IIB AT

AU waitpid()] THEE M ATHERE, FLH] pid 7€ 0 TR T (k) sl 2R A& izt
FERIE S, B T SR —ME SR (F 5 B . Wk pid Proa iy #EFE R 2R Y (il
(EAERERD), WA AR S 2R Ao 5 REREAE] A BITAT BE ORI 12 R 51 BAR A th B LS
BEAT AN AR B . P ILACHS P AR OGHRE o

5.9.2 REGER
5%k 5.8 linux/kernel/exit.c 32fF

1%

2 # linux/kernel/exit.c

3 *

4 * (C) 1991 Linus Torvalds

5 #

6

7 #include <errno.h> /) EERTERCE . WE RGP M AT . (Linus M minix H5)
8 #tinclude <signal.h> /) AG TR B UG TR TR, AR T A DS T 1R R R A
9 #include <sys/wait.h> /) EERFR SRS . E RG] wait O Ml waitpid O MAHKRE T 5.
10

11 #include <linux/sched.h> // PAEREPLICHE, & L TAES 451 task struct. PILAIESS 0 HI%dE,

[/ BE—YH IR TSR E R N FT g oA B TR
#include <linux/kernel.h> // WHIZKICHE. & Lo A% s H e 00 JRUE & o
#include <linux/tty.h> /)ttty Sk, @ X THEIK tty io, HATHEE T HMISE. HH.
#include <asm/segment.h> // BX#fELICME. € X T A BT AF 28 B AE 1 N 207 9 R 20

int sys pause (void) ;
int sys close(int fd);

0 |1 [|01 [[Do

/1] RETBARE IR (FE55) -

19 void release(struct task struct * p)

- 122 -

5.9 exit.c &7

20 {

21 int i;

22

23 if (!p)

24 return;

25 for (i=1 ; i<NR_TASKS ; i++) [/ AR R, FHEIEEMS.
26 if (task[i]==p) {

27 task[i]=NULL; /) BEAZAL S5 ORI 5 A A7 5L
28 free page((long)p);

29 schedule () ; /) TEFREL .

30 return;

31 }

32 panic(“trying to release non-existent task”); // FREALSHAAFAENIZEHL.
33 }

34

///] TR EARSS (xp) RIL(E T (sig) » AUPRA prive
35 static inline int send sig(long sig, struct task struct * p, int priv)
36 {
/) G T A IE AT S5 FRE A 2 W AR .
37 if Up || sig<l || sig>32)
38 return —EINVAL;
/) A EGEREA R P AR RAT (euid) g 4a e R euid BUF S, WIFEREREAL B rhgs i
/) EE S, SWHANR . H suser O & U8 (current—>euid==0), HTHIBrEHEHH .
39 if (priv || (current->euid==p—>euid) || suser())
40 p—>signal |= (1< (sig-1));
41 else
42 return —EPERM;
43 return 0;
44)

- //// #ibE43iT (session) .

46 static void kill session(void)

47 {
48 struct task struct #*kp = NR_TASKS + task; // #R%El*p 55048 AT 524l e A v o
49
/) TR NALS (BRES 0 AL , RSG5 T M ar b RE () & 00l 1n) & AOL EEWT R S 5 .
50 while (—p > &FIRST TASK) |
51 if (kp && (¥p)—>session == current->session)
52 (#p) —>signal [= I<(SIGHUP-1); // JIXHEWidtfe(s 5.
93 }
54 }
55
56 /*

57 * XXX need to check permissions needed to send signals to process
58 #* groups, etc. etc. kill() permissions semantics are tricky!
59 %/
/%
* T RS RIAE S, XXX FER VI kill O MVFaTHLEIEES 152!
* /
//// kill Q) RS o] T AT A] R s gt R 2 R IR AT 5 5 o
// Wk pid fH>0, WME S H K%L pid.
// MR pid=0, LGBl Aakeh AT bR f R A b i A R
// R pid=-1, WHET sig Wha RKIELHBRE — ARSI T iR .

- 123 -

5.9 exit.c &7

// WmF pid < -1, MWMES sig ¥ AEh IR —pid A R
/) WRAES sig A 0, WIAKIEGES, BTG w3 ERE 0.
60 int sys kill(int pid, int sig)

61 {

62 struct task struct **p = NR TASKS + task;

63 int err, retval = 0;

64

65 if (!pid) while (——p > &FIRST TASK) {

66 if Gkp && (kp)—>pgrp == current—->pid)
67 if (err=send sig(sig, *p, 1))
68 retval = err;

69 } else if (pid>0) while (——p > &FIRST TASK) {
70 if Gkp && (xp)—>pid == pid)

71 if (err=send sig(sig, *p, 0))
72 retval = err;

73 } else if (pid == -1) while (—p > &FIRST TASK)
74 if (err = send sig(sig, *p,0))

75 retval = err;

76 else while (—p > &FIRST TASK)

77 if (*p & (*p)—>pgrp == —pid)

78 if (err = send sig(sig, *p, 0))
79 retval = err;

80 return retval;

81 }

82

/) WA — IR pid REAE S SIGCHLD: THERRAE A L
/) HREAT BB, W SRR
83 static void tell father(int pid)

84 |

85 int i;

86

87 if (pid)

88 for (i=0;i<NR_TASKS;i++) {

89 if (!task[i])

90 continue;

91 if (task[i]->pid != pid)
92 continue;

93 task[i]->signal |= (1<<(SIGCHLD-1));
94 return;

95 }

96 /* if we don’t find any fathers, we just release ourselves */
97 /% This is not really OK. Must change it to make father 1 %/

98 printk ("BAD BAD - no father found\n\r’);

99 release(current); // WERWAHKBIRIRE, WH K.
100 }

101

)/ R HARERL Y. AE R GV 10RO AL FE R R B
102 int do_exit (long code) // code JEHE T

103 {
104 int i;
105
// BB T HEREACRS BRI BT 5 I A7 L (free _page tables () 7E mm/memory. ¢, 105 4T)
106 free page tables(get base(current->1dt[1]), get limit (0x0f));

- 124 -

5.9 exit.c &7

107 free page tables(get base(current->1dt[2]), get 1imit (0x17));
J/ MRS ETHEREE R, TR father BN 1 (LAQHFREMCHHERE 1) . IR iZ T g
// R TABIE (ZOMBIE) ARZS, WImEfe 1 &Ikl 2 1015 % SIGCHLD.

108 for (i=0 ; i<NR _TASKS ; i++)
109 if (task[i] && task[i]->father == current->pid) {
110 task[i]->father = 1;
111 if (task[i]->state == TASK ZOMBIE)
112 /% assumption task[1] is always init */
113 (void) send sig(SIGCHLD, task[1], 1);
11 }
/) R FTEEREST T B P S A
115 for (i=0 ; i<NR_OPEN ; i++)
116 if (current—>filp[il)
117 sys_close(i);
// RPAETEERE TAE H 5% pwdy B H 3% root DLAGSATREITI 1 19 sl AT FPHAE, FEor & 2.
118 iput (current—>pwd) ;
119 current—>pwd=NULL;
120 iput (current->root) ;
121 current—>root=NULL;
122 iput (current—>executable) ;
123 current—>executable=NULL;
[/ TR YRR Ak (Teader) MERE I H LA 2 1) 2, UDRE I 24 i o
124 if (current->leader && current->tty >= 0)
125 tty tablelcurrent->tty]. pgrp = 0;
// WY RETHERE B P AR BEES, TIPS last task used math B
126 if (last task used math == current)
127 last task used math = NULL;
// WHRYRET R S leader HERE, NI FTAAHCHERE
128 if (current—>leader)
129 kill session();
// AR E ORGSR R E R
130 current—>state = TASK ZOMBIE;
131 current—>exit_code = code;
// GEEACHERE, B H) ALRERE KA 5 STGCHLD — —FREREK i 1R a2 1k,
132 tell father (current—->father) ;
133 schedule () ; // TR LR IS AT .
134 return (-1); /% just to suppress warnings */
135}
136

/1] BGE exit (). KL,

137 int sys_exit(int error_ code)

138 {

139 return do_exit ((error code&0xff)<<8);
140 }

141

/1)) RGEWH waitpid(O o HEYETHERE, B2 pid R FHERGEH (&b sl ERk 2400
/) ZBREMES, EAFERH MG SN (E5 AR o Wil pid Frigm iR E
// B CERPTIEEAERERS) , WA S 2R] BEREAE I 18 BT 8 R B i o

// W pid > 0, LRERFFESET pid (TR

// I pid = 0, RRZERFIFEA S ST YT HERE AFA] FHERE .

// A pid < -1, FOREGAAFVERA 5% T pid 4oeHE AEf T3ERE .

// U pid = -1, RRERMT TR,]

// #i options = WUNTRACED, F/rUilfv it @&iibm, hi FiRla,

- 125 -

5.9 exit.c ¥

// #i options = WNOHANG, FnunHiH FfEiE Heigibm s LirlH,
// W stat addr ANAAS, NECERESE SR 2R .
142 int sys waitpid(pid t pid,unsigned long * stat addr, int options)

143 {

144 int flag, code;

145 struct task struct ** p;

146

147 verify area(stat_addr, 4) ;

148 repeat:

149 flag=0;

150 for(p = &LAST TASK ; p > &FIRST TASK ; —p) { // MESEA KuIF MG A5 .
151 if (!*p || *p == current) // Bt 2 TR AS R T

152 continue;

153 if ((kp)—>father != current—>pid) // TR Y SRR) R Bk
154 continue;

155 if (pid>0) { [/ WRFRER pid>0, (HAREMHERE pid
156 if ((kp)—>pid != pid) /) HZAE, Wigkid.

157 continue;

158 } else if (Ipid) { // WRARE N pid=0, (HEAR RS
159 if ((xp)—>pgrp != current—>pgrp) // HA4FTHEREMAH 5 A, NBkid.
160 continue;

161 }oelse if (pid != -1) { // WRARGER pid<-1, A UERAL
=

=

162 if ((kp)—>pgrp '= -pid) /) HHAIEATE, Wk,

163 continue;

164 }

165 switch ((kp)—>state) {

166 case TASK STOPPED:

167 if (! (options & WUNTRACED))

168 continue;

169 put fs long(0x7f, stat_addr) ; /) BEAIREBER A 0x7f,

170 return (kp) —>pid; // B IR AR R
171 case TASK ZOMBIE:

172 current—>cutime += (¢p)—>utime; // BB 4HT RN FHEFEH P
173 current—>cstime += (kp)->stime; // ABHHL OB ITI A,

174 flag = (*p)—>pid;

175 code = (¥p)—>exit code; [/ BUCFRERRE A .

176 release (*p) ; /) BEIZ TR

177 put_fs long(code, stat_addr) ; // EWRESE BAIB G .
178 return flag; // B, REFHERE pid
179 default:

180 flag=1; /) QR I REAE A I BARAEIRES,] flag=1,
181 continue;

182 }

183 }

184 if (flag) { [/ AR TR R Ab TR Y B E AR A
185 if (options & WNOHANG) // JFH options = WNOHANG, W37 ZI3&[H],
186 return 0;

187 current—>state=TASK INTERRUPTIBLE; // & 4HidEFE A al F W fmhas.

188 schedule () ; // BT

189 if (!(current->signal &= ~(1<<(SIGCHLD-1)))) // MIFUAAT ASHEFES,

190 gotorepeat; // WURBEREBATWCEIER STGCHLD HIfF 5, ML & FEAEALEL,
191 else

- 126 -

5.10 fork.c F&F

192 return —EINTR; // BH, IR[E[H A,
193 }
194 return —ECHILD;

5.10 fork.c #JF

5.10.1 LhgEAR

fork() & 4t i A TG g 7 1ERE o Linux A dEREEE AR 045 O FiERE . i%F2 /742 sys_fork()
(7E kernel/system_call.s H & X RGHH MBI PR £ 8, 25 T sys_fork() R 480 H =48 A~
C & S ¥ find_empty _process() 1 copy_process() . i 10 55 3E B P A7 X 50 56 30F 55 4 77 29 IiC 68 3L
verify_area().
copy_process() & 1 -8 I 5 HIHERE A AUD BOMI IR B AR o FERERE S R b, 242 5|
BEREEE S5 A s B IR

5.10.2 {X#5iEHR
FIFE 5.9 linux/kernel/fork.c 2%

linux/kernel/fork. c

*%%}

(C) 1991 Linus Torvalds
*/

®

* ’fork. ¢’ contains the help-routines for the ’fork’ system call

* (see also system call.s), and some misc functions ('verify area’).

* Fork is rather simple, once you get the hang of it, but the memory

* management can be a bitch. See 'mm/mm. c’: ’copy page tables()’

*/
/%

* " fork. ¢’ TEH ARG fork’ B TFREF (S system call.s) , PAR—EHEHE
* (verify area’). —HARTHRET fork, HieRINVERZIEF WA, (HNAFEEEEIAG LERERE
* 2L mm/mm. ¢’) copy page tables()’ .

— = =
|l\3|>—‘|o [© |00 [|O |O1 [[DO =

*/
13 #include <errno. h> /) EERTERCE. WE RGP EM AT . (Linus M minix H5|REH)
14
15 #include <linux/sched.h> // HAEFREFLICH, ©X TSR task struct. #IUHAES 0 4,

[/ B —YH IR TSR E R N FT g pR B TR
#include <linux/kernel.h> // WHIZKICHE. & L% H R0 JRUE & o
#include <asm/segment.h> // BX#fELICME. € X T A IRB AT AF 25 B A 1 e N 207 9 BRI 5
#tinclude <asm/system.h> // RG:LIHF. & X T CE BAE SHRTE/ BT TSN 90 %

— = = =

- 127 -

5.10 fork.c F&F

20 extern void write verify(unsigned long address) ;
22 long last pid=0;

//// REREZE) DX 38 S BT S R A
/) R YRTRERE bR addr B addr+size 1X— Bt e A% (0] LA GU ok B S0A T 5 B AE 1T (PR I 4
// VLIRS), WP AT LA 50 A R CERRED .

24 void verify area(void * addr, int size)

25 |
26 unsigned long start;

27

28 start = (unsigned long) addr;

[/ FEREAG L start PN TR SR 220 FOT b L, R) I A N U B 50 DA oR
// BRI start & 2 prRERE 2 A) v A Ze it

29 size += start & Oxfff;
30 start &= Oxfffff000;
31 start += get base (current—>1dt[2]); // MW start ZZp RGIEN G2 () rh (R H AL 2
32 while (size>0) {
33 size —= 4096;
// BUUHSAE. #5 0HATS, WSZH V. (mm/memory. ¢, 261 17)
34 write verify(start);
35 start += 4096;
36 }
37}
38

[/ SRR A AN B BRI BRACIF R TR .
[/ nr FHAES T p EHE S B A M TR

39 int copy mem(int nr,struct task struct * p)

40 {

41 unsigned long old data base, new data base, data limit;

42 unsigned long old code base, new code base, code limit;

43

44 code limit=get limit (0x0f); // HUJm¥BHiRFT R P ACH BL R £7 i rh B A .

45 data limit=get 1limit (0x17); // HUJFBHGIAFRT R &t BL R £y mirh B .

46 old code base = get base(current—>1dt[1]); // BURACHSERHLHE,

47 old data base = get base(current->1dt[2]); // HWUREdE B AL,

48 if (old data base != old code base) // 0. 11 BN SCRARTE P8 B 43 S (A5 10
49 panic (“We don’t support separate 1&D”);

50 if (data limit < code limit) // IR < ARIEEBKEEAXS,

51 panic (“Bad data limit”);

52 new data base = new code base = nr * 0x4000000: // #r3Eht=1T4%5%64Mb (fF55K/1) o
b3 p—>start code = new code base;

54 set base (p—>1dt[1], new _code base); // BEACHBLHGIARTF I bk

55 set base (p—>1dt[2], new _data_base); // VB BCANIAFT A bk

56 if (copy page tables(old data base,new data base, data limit)) {// EHIACHFIEHEEL .
57 free page tables(new data base, data limit); // 5 H 4 WPRECH R 1O N AF
58 return —ENOMEM;

99 }

60 return 0;

61 }

62

63 /%

64 * Ok, this is the main fork-routine. It copies the system process

- 128 -

5.10 fork.c F&F

65 * information (task/nr]) and sets up the necessary registers. It
66 * also copies the data segment in it’s entirety.
67 #/
/%
* OK, FIi2FEM fork FRF. ©EH RIS (task[n]) I HE DB 74745
* P IR A B
*/
/) SR
68 int copy process(int nr, long ebp, long edi, long esi, long gs, long none

69 long ebx, long ecx, long edx,

70 long fs, long es, long ds

71 long eip, long cs, long eflags, long esp, long ss)

72 |

73 struct task struct *p;

74 int i;

75 struct file *f;

76

ik p = (struct task struct *) get free page(); // JHAESEHEL NI DAL

78 if (!p) // IR WAL S, DR (A RS IR H

79 return —EAGAIN;

80 task[nr] = p; /] BTG S TR E TRNAT 55 5

// Honr B4, BT find empty process () i [H].
81 *p = *current; /%* NOTE! this doesn’t copy the supervisor stack #*/
[H R XA SR R */ ARSI N .

82 p—>state = TASK UNINTERRUPTIBLE; // ¥#rdbfe rRZsse B A SRR A .

83 p—>pid = last pid; // BT . AT find empty process () 35/,
84 p—>father = current->pid; /] BB

85 p—>counter = p—>priority;

86 p—>signal = 0; /) A S EE 0,

87 p—>alarm = 0;

88 p—>leader = 0; /* process leadership doesn’t inherit #/

/% R RBUE AR K */

89 p—>utime = p—>stime = 0; // WA 28 I Ta) FIAZ A N]

90 p—>cutime = p—>estime = 0; // WAL THERE] A HAZ LA N A o

91 p—>start_time = jiffies; /AR N A o

// CA N BCEAR SR B TSS Frids (e (S WAR G W) .
92 p—>tss.back link = 0;
93 p-—>tss.esp0 = PAGE SIZE + (long) p; // MikIREN (T REGESE M p AL T 10
/) HWAE, PFTEABEIN espO 1EAF4E)i S T0) .

94 p—>tss. ssO0 = 0x10; /) HERRBOEREFT (NEZEHRBD [22].

95 p—>tss.eip = eip; // FaA RIS RE .

96 p—>tss. eflags = eflags; /] FREFTAR

97 p—>tss.eax = 0;

98 p—>tss.ecx = ecx;

99 p—>tss. edx = edx;
100 p—>tss. ebx = ebx;
101 p—>tss.esp = esp;
102 p—>tss. ebp = ebp;
103 p—>tss.esi = esi;
104 p—>tss.edi = edi;
105 p—>tss.es = es & Oxffff; /) B AEAAN 16 5K
106 p—>tss.cs = cs & Oxffff;
107 p—>tss.ss = ss & Oxffff;

- 129 -

5.10 fork.c F&F

108 p—>tss.ds = ds & Oxffff;
109 p—>tss. fs = fs & Oxffff;
110 p—>tss.gs = gs & Oxffff;
111 p—>tss. 1dt = _LDT(nr); // &HHES nr WJRARR TR EHEST (LDT AR AFAE GDT) o
112 p—>tss. trace bitmap = 0x80000000; (/& 16 MiHHD -
[/ WY HTAESATH T b B, s R E I B SC
113 if (last_task used math == current)
11 ~asm_ ("clts ; fnsave %07 : m” (p—>tss.i387)):

[/ BCEBAT S AR A S e B . BROFRBIIR . W e GRIPIEANE 00, MR A5 Eedl
/[AR LI REIBOCN 2B AT 55 73 BE K A 0T

115 if (copy mem(nr,p)) f{ [/ IRIEIA, 0 FKos HER
116 task[nr] = NULL;
117 free page ((long) p);
118 return —EAGAIN;
119 }
/) TURACHERE A SO AT IR, UK B SCAF T R E808 1.
120 for (i=0; i<NR_OPEN;i++)
121 if (f=p—>filplil)
122 f->f count++;
// B YETHERE (R B pwd, root Fll executable 5| IREIYIE 1,
123 if (current—>pwd)
124 current—>pwd—>1 count++;
125 if (current->root)
126 current—>root—>i_count+t;
127 if (current—>executable)
128 current—>executable—>1 count++;

// 7E GDT F i & BiAE45 11 TSS FI LDT k45T, Hdi N task 4504 HL,
[/ ATV, 1457547 4% tr t CPU H3hnak.

129 set_tss desc (gdt+(nr<<1)+FIRST TSS ENTRY, & (p—>tss)) ;
130 set_1dt desc (gdt+ (nr<<1)+FIRST LDT ENTRY, & (p—>1dt)) ;
131 p—>state = TASK RUNNING; /% do this last, just in case */
/% G PR ARSI ATIRES, AT — %/
132 return last pid; // RS (5% SR AR .
133 }
134

[/ AR AL IR T last_pid, JFIRFIEAESEA LSS B index) .
135 int find empty process (void)
136 {
137 int i;
138
139 repeat:
140 if ((++last pid)<0) last pid=1;
141 for(i=0 ; i<NR_TASKS ; i++)
142 if (task[i] && task[i]->pid == last pid) goto repeat;
143 for(i=1 ; i<NR_TASKS ; i++) // {T5% 0 HEERAESb.
144 if (ltask[i])
145 return i;
146 return —EAGAIN;
147)
148

- 130 -

5.10 fork.c F&F

5.10.3 HEEER

5 10 3 1 1%%4*"_,\51 (TSS) 1|:|:|_,\
N 5.8 FEARSIRA B TSS (Task State Segment) [P 28, e (5 G 2 ILB =% .

31 23 15 7 0
1/O Wi P hE(MAPBASE) [0 000000000000000| 64
0000000000000000 JR R 2T L (LDT) Kk P4 | 60
0000000000000000 GS 5C
0000000000000000 FS 58
0000000000000000 DS 54
0000000000000000 SS 50
0000000000000000 CS ac
0000000000000000 ES 48
EDI 44
ES| 40
EBP 3C
ESP 38
EBX 34
EDX 30
ECX 2C
EAX 28
EFLAGS 24
RAIREH(EIP) 20
U SRAEHIE %5 47 %% CR3 (PDBR) 1C
0000000000000000 | sS2 18
ESP2 14
0000000000000000 | ss1 10
ESP1 oc
0000000000000000 | SS0 08
ESPO 04
0000000000000000 i —PATAESS TSS HifiAss | 00

&5. 8 {EKIRTSER TSS HMIEE .

CPU & BIAT45 T5 LW T A 15 B AR T — NMRFARSR I B rh, AT 55 IR B (task state segment - TSS).
B eh R AT 80386 44511 TSS #4:K.
TSS T BT DLy A 2K
1. CPU TERH TR 45 DI i BB (M 3 45 B4 . XL B
o WM Fe (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDD);
0 Btarfiss (ES,CS,SS, DS, FS, GS);
o bri&iarfeay (EIP);
o HRAFREN (EIP);
I —NMATAES 1 TSS AT (BSR4 E R

- 131 -

5.11 sys.c F&fF

2. CPU HUEAS M AME BE. KT B
0 L4511 LDT ML FA4
0 SIS T H bl % 47 %% (PDBR);
0 FrALLL 0-2 IR TR
0 MEL AT VI I T8 CPU 24— AN (debug) 7 4 1) T-LLRRfr CIRRERERAT);
0 1/O LLAFA7 P FE bl (FLK T IR TSS MK JE 1R, 75 TSS k7 i).

(SRS BT AP IAE R A AT My o 5 LS 3 2R B, R4 IRAS B 2 IR R R e X
Mo MATIEZERATATS I TSS B HATLA 24728 (TR) k871, 154 LTR F1 STR F k& g fise T 4%
PAERE KR FRST (R4S 2 A2] WL B0)

1/O EEARA PP 0 4E 1 LRSI 1A 1/O S 1o Elduni 11 41 (O LLRRA k2 1/O A7 B hE+5, 7
1 Ab. R, 24385 1 1/0 F54 I (IN, INS, OUT, OUTS), CPU B 4Lt i 25 i b 4 2
/N TAREZFAEAR IOPL, WAL, BT 1% 110 #:4E. WAL, M4 CPU ikt
TSS F11f) /O LA o WRAHDY LR BT, S A — R 3, BN ST % 110 #
k.

5.11 sys.c f2fF

5.11.1 hgEHAR

sys.c By AU B AR 2 R G0 I DR i S0 ek 28 e, 25 3R [B1E A -ENOSY'S, W 7= AR 1 linux
WHRATSEBZ IR, W LAZ2E H RIS R TR EAT TS I R G D se it Wi 2 Wk 3C
4 include/linux/sys.h.

5.11.2 K58
5z 5.10 linux/kernel/sys.c 2F

1 /*

2 * linux/kernel/sys. c

3 *

4 * (C) 1991 Linus Torvalds

5 #

6

7 #include <errno.h> /) EERTERCE. E RGP EM A S . (Linus M minix H5|REH)
8

9

#include <linux/sched.h> // WREEREFLICH, & X TAES S50 task_struct HIUHIESS 0 %N,
[/ B —YH IR SR E R N FT g oA B TR .

#include <linux/tty.h> /)ty SK3CHE, ECTHK tty do, HATIEAE IS EL. HE.

#include <linux/kernel.h> // WHIGKSCHE. & —Se A% H e 0T J5UE & o

#include <asm/segment.h> // BUEAESLSCIE. @ ST A RBEA A7 28 E IR N I 2 R 40

#include <sys/times.h> // ESCT REFEFISAT I I 4544 tms LA times () RAL T,

#include <sys/utsname.h> // BRGNS

—
(e}

rtocgicg g
= o Do [—

—
(@)}

// IR [BIH IR Ta] o

- 132 -

5.11 sys.c F&fF

16 int sys ftime()
17
18 return —ENOSYS;
19 }
20
//
21 int sys break()

{
return —ENOSYS;
}

DO DO DO DN
512 (3 1R |

// AT T EERER 1 HEREREAT I (degugging)

26 int sys ptrace()

27 {

28 return —ENOSYS;
29)

30

/) BB IEAT AT R R

31 int sys stty()

32 {

33 return —ENOSYS;
34

35

/) WA RAT AR S

36 int sys gtty()

37 {

38 return —ENOSYS;
39}

40

/] B4

41 int sys_rename ()

42 {

43 return —ENOSYS;

44}

45
//

46 int sys prof ()

47 |

48 return —ENOSYS;

49 }

50
// BB AT I SEBR A S/ BB B 1D (gid) o WIRATSWH B PR
[/ BB R LS bR ID A 2 1D, W SRAT 55 A B FRAL, il e AT = B A R R S B
// WIH 1D, PREEIY gid (saved gid) #{E RS A N gid [FMEH.

51 int sys setregid(int rgid, int egid)

52

53 if (rgid>0) {

54 if ((current->gid == rgid) ||
55 suser ()

b6 current—>gid = rgid;
b7 else

58 return (-=EPERM) ;

99 }

- 133 -

5.11 sys.c F&fF

60 if (egid>0) {

61 if ((current->gid == egid) ||
62 (current—>egid == egid) ||
63 (current->sgid == egid) ||
64 suser ()

65 current—>egid = egid;
66 else

67 return (-EPERM) ;

68 }

69 return 0;

70 }

71

/) WEBBEAS (gid) o WAL BAEYH R, e LMEH setgid OB HARL gid
// (effective gid) W B NMILIRHE gid(saved gid) 865 gid (real gid) . WHEATESH
[/ R R WSERR gidy AL gid FIORBY gid ARG E S EE 1) gide

72 int sys setgid(int gid)

73 {

74 return(sys _setregid(gid, gid));
75 }

76

// FTIFEOC R TR D fg
77 int sys acct()
78 {
79 return —ENOSYS;
80 }
81
[/ WREHAT B EE N AT B HERE I B P00 il)
82 int sys phys()

83 {

84 return —ENOSYS;
85}

86

87 int sys lock()

88 {

89 return —ENOSYS;
90 }

91

92 int sys mpx ()

93 {

94 return —ENOSYS;
95 }

96

97 int sys ulimit ()

98 {

99 return —ENOSYS;
100 }

101

// RPN 1970 45 1 H 1 H 00:00:00 GMT FFaavh I I aME (B2 o WiiR tloc ANh null, DA TR]{E
// WAAELEIR B

102 int sys time(long * tloc)

103 {

104 int i;

105

- 134 -

5.11 sys.c F&fF

106 i = CURRENT TIME;

107 if (tloc) {

108 verify area(tloc, 4) ; /) BN ER AN OXHEZE 477

109 put fs long(i, (unsigned long *)tloc); // AN HFEE: tloc 4k,
110 }

111 return i;

112 }

113

114 /#*

115 # Unprivileged users may change the real user id to the effective uid
116 * or vice versa.

17 #/
/%
* JCREALI A AT DAL SERR P bR IRAT (real uid) dOscA 8 P AR RS (effective uid), RZ AR,
*/

[/ WCEATESRISERR LN/ BE RO ID (uid) o USRS EBEH A, R4 HEe T =
// SEBRH T ID FA RO 7 1D W ST S5 HATE I R, i e AT e B A R AL B 7 1D
// ARER uid (saved uid) #E¥E K S5HE R uid [FME.

118 int sys_setreuid(int ruid, int euid)

119 {

120 int old ruid = current—>uid;

121

122 if (ruid>0) {

123 if ((current—>euid==ruid) ||
124 (old ruid == ruid) ||
125 suser ()

126 current—>uid = ruid;
127 else

128 return (-=EPERM) ;

129)

130 if (euid>0) {

131 if ((old ruid == euid) ||
132 (current—>euid == euid) ||
133 suser ()

134 current—>euid = euid;
135 else {

136 current—>uid = old ruid;
137 return (-EPERM) ;

138)

139 }

140 return 0;

141)

142

/) WEALSH)T (wid) o WERATS- B EH A PR el LM setuid O K HARL uid
// (effective uid) WERILAE uid(saved uid) BEHSLr uid (real uid) . WIRATSH
J/ B EAL, MISEEr uid. AL uid AR uid #E E RS I N uid.
143 int sys setuid(int uid)
144 {
145 return(sys setreuid(uid, uid));
146 }
147
// BB ZRGHAHY. S5 tptr £ 1970 4 1 H 1 H 00:00:00 GMT JF4A I AR TRIME (B2
// PR R A 25 B AT R AR

- 135 -

5.11 sys.c F&fF

148 int sys stime(long * tptr)

149 {

150 if (!suser()) [/ IRASE Y I AR A R
151 return —EPERM;

152 startup_time = get fs long((unsigned long *)tptr) — jiffies/HZ;
153 return 0;

54 }

—
=~

—
(@a]

/) RBCAFALSS A tms Gk AR IR . RGE T FHEREH] N] R RGN T

156 int sys_times(struct tms * tbuf)

157 {

158 if (tbuf) f

159 verify area(tbuf, sizeof *tbuf);

160 put fs long(current—>utime, (unsigned long *)&tbuf->tms utime) ;
161 put fs long(current—>stime, (unsigned long *)&tbuf->tms stime) ;
162 put fs long(current—>cutime, (unsigned long *)&tbuf->tms cutime) ;
163 put fs long(current—>cstime, (unsigned long *)&tbuf->tms cstime) ;
164 }

165 return jiffies;

166 }

167

// M2 end data_seg FUEHGHEL, I HRGEHSEAT L HINAE, 17 HLERE AT BT B B Be o/
/) W, ZBREOR B BOR RN end data seg FREIMH . IZ(E LUK TS 25 R H N T HEFk
// &5 16KB. IR [FME & H B g B E (SR A 5 ERAEAE, WERMAE R E) .
[/ GREGEAYH P B, mit libe FER BT A%, I HIRBMEHBA—FE,
168 int sys brk(unsigned long end data seg)

169 {

170 if (end data seg >= current—>end code && // WMRSHORM LR, IFH
171 end data seg < current—>start stack — 16384) // /NFHEF-16KB,

172 current—>brk = end data seg; // W B B B Ak Al .
173 return current—>brk; // 3R RTHERE 24 T Ed Bt Rl .

174 }

175

176 /*

177 # This needs some heave checking ...
178 # I just haven’t get the stomach for it. I also don’t fully
179 #* understand sessions/pgrp etc. Let somebody who does explain it.
180 #/
/%
N TR E T g M T Rt
* L H AR E AR MIX s, R AEEH A sessions/perp o b2 ik TR E AT AR .
*/
// ¥SH pid g e RS 1D & pgide WRSH pid=0, MMEH MardEfEs. Wil
// pgid 4 0, MMAEHZE pid fa @ MEEREAI4L 1D 46K pgide WHZ R H T8 SR N —A
[/ HRAB RN HERRLL, WX A SRR LR T R — A4 i (session) o EIXFHIEILT,
// ¥ pgid ¥55E T EMANIMIAIEFEA 1D, MIZA 21 1D a5 K B In NSERE AR 1) (193 47) «
181 int sys setpgid(int pid, int pgid)

182 {

183 int 1i;

184

185 if (Ipid) // R BH pid=0, WL AT S .

186 pid = current->pid;

187 if (!pgid) // W pgid A0, WAEH MarERE pid fE4 pgid.

- 136 -

5.11 sys.c F&fF

188 pgid = current->pid; // [293XH 5 POSTX ik A B]

189 for (i=0 ; i<NR_TASKS ; i++) /) FARAES A, AR E R S S

190 if (task[i] & task[i]->pid==pid) {

191 if (task[i]->leader) [/ WRZATS CA R AL WA IR [
192 return —EPERM;

193 if (task[i]->session != current—>session) // WIHRZATSHI431% 1D
194 return —EPERM; [/ 5RO, AR R (A
195 task[i]->pgrp = pgid; /) WEGATES P perp.

196 return 0;

197 }

198 return —ESRCH;

199 }

200

// RIPPYATH RS . 5 getpgid (0) %5 (M.
201 int sys_getpgrp(void)
202 {
203 return current—>pgrp;
204 }
205
// B2 (session) (R EH leader=1) , I H &% EHSE=HA =T,
206 int sys setsid(void)

207 {

208 if (current->leader && !suser()) // WIHRMHTHERE O & 08 B A0F HA S HH
209 return —EPERM; // DR [E]

210 current—>leader = 1; // BCE A HTHERE A E o v

211 current—>session = current—>pgrp = current—>pid; // WHEAIFE session = pid.
212 current—>tty = —1; [/ RN TR B 1 1 2 i

213 return current->pgrp; // RIFIES1E 1D,

214 }

215

// PERGEE B Hordt utsname S5 5 ATFEL AR ARRARRE RGN ATR. LT AT
/) BETRAT . AR 2R 44K

216 int sys uname (struct utsname * name)

217 {

218 static struct utsname thisname = { // XHZGH TEMTRER, XFgid e auoR.
219 “linux . 07, “nodename”’, “release ’, “version *, “machine ~

220 b

221 int i;

222

223 if (!name) return —-ERROR; // I RAETIUF G X FE T S 2 D) H R (] o

224 verify area(name, sizeof *name); // FGUFZEIPIX K/NETEIR GEH ORI NS .
225 for (i=0;i<sizeof *name;i++) // ¥ utsname HAE BB AT S HI B P gz b X b,
226 put_fs byte(((char *) &thisname) [i], i+(char *) name) ;

227 return 0;

228 }

229

[/ BB TR BN SO JE M R RS mask & 07770 FfaR[H] g5 5E #chd o
230 int sys umask (int mask)

231 |
232 int old = current—>umask;
233

234 current—>umask = mask & 0777;
235 return (old);

- 137 -

5.12 vsprintf. c F&%

236
237

5.12 vsprintf.c 125

5.12.1 IhgEHA

T AUSE vsprintfQOp& %, TR SH0 AR AL . i TR EOE C rRBUE M brHER R, JE
KREATH SN CAEIEE, DRIn] DAL o B e 1 A S 2 ek A8 T B

5.12.2 XF3iF R
B 5.11 linux/kernel/vsprintf.c IBF

1 /%
2 #* linux/kernel/vsprintf.c
3 #
4 * (C) 1991 Linus Torvalds
5 #
6
7 /% vsprintf.c — Lars Wirzenius & Linus Torvalds. */
8 /*
9 % Wirzenius wrote this portably, Torvalds fucked it up :-)
10 #/
11
12 #include <stdarg.h> /) bRMESECR . DORRTEAGE R RS H IR . R T-A
// KA (va list) fl=A % (va_start, va arg fll va end), HTF
// vsprintf. vprintf. vfprintf %L,
13 #include <string.h> /)RR FEE ST A AT R R R N BRI AL
14
15 /* we use this so that we can do without the ctype library +/
/x FAMER T E S XA AT AAMEH] ctype ET %/
16 #define is digit(c) ((c) >= 77 & (c) <= "9) // FIKNIZRRAEGEFFF.
17
/) BB TR R O N B TR R EOSREE, IR DR SIREE . S AMRE R TR
18 static int skip atoi(const char *#s)
19 {
20 int i=0;
21
22 while (is_digit (¥*s))
23 i=1i%10 + *((xs)++) - 77
24 return i;
25}
26
/) IXHLE SRS) BT 5 1
27 #define ZEROPAD 1 /* pad with zero #/ /% HARE x/
28 #tdefine SIGN 2 /* unsigned/signed long %/ /* ToFF5/fH 5 K384 */
29 #define PLUS 4 /% show plus %/ /% BRI x/
30 #define SPACE 8 /% space if plus %/ /% WU, WE S/
31 #define LEFT 16 /% left justified */ /% TR %/

- 138 -

5.12 vsprintf. c F&%

32 #tdefine SPECIAL 32 /* Ox %/ /% 0x */
33 #define SMALL 64 /% use ’abcdef’ instead of 'ABCDEF’ #/ /* {{iH/NE5-BE */
34

[/ BREAE. BN n ABERREL, base NFBREL 5% n MR, ERECORPIMENREL
// 2 4.5, 3 WA NI G A5 B .
35 #define do div(n, base) ({ \
36 int _res; \
37 asm_ (“divl %47 "=a” (n), "=d” (_res):”” (n), 717 (0), “r” (base)); \
38 res; })

/] BB A Fe e BRI)RR
// N num— 384 base— @l size—FRFHKE; precision—HUF K (KR s type—RAUIETN,
/) Wit str T HRSEL.

40 static char * number (char * str, int num, int base, int size, int precision

41 ,int type)

12

43 char c, sign, tmp[36];

44 const char *digits="0125456789ABCDEFGHI JKLMNOPQRSTUVIXY”:
45 int i;

46

[/ WERZRA type SR I/NG FERE, WE SUNS 7 REE
/) IRRIFE e EE GEAL S, MR I bR .
/) IREREEECNT 2 BORT 36, MR ARPE, B EIACKE P H e A B A 2-32 Z A A

47 if (type&SMALL) digits="0123456789%abcdefghi jklmnopqrstuvwxyz”;
48 if (type&LEFT) type &= ~ZEROPAD;

49 if (base<2 || base>36)

50 return 0;

// MR EIAE, WE AR =0 (WRY’) , /N ¢ HFFH PR

// WHRIEAEE R A5 20T HAUE num ZNT 0, MPEFFS A& sign=19", FFAl num BLLEXTH .

/) EWARE AR BRI, WE sign=in"5, AR AR EN sign="54%, HIE 0.
51 ¢ = (type & ZEROPAD) ? °7 : 7~

52 if (type&SIGN && num<0) {

53 sign="-";

b4 num = —num;

55 } else

56 sign=(type&PLUS) ? ’+” : ((type&SPACE) ? =~ : 0);

[/ BT, MITEPEALIR 1o 5 RAUSE R R A, T N BE] 98 B> 2 A7 (T 0x%)
[/ R NRER B Uk 1 I)\ BE L S 45 R — %)

57 if (sign) size—;
58 if (type&SPECIAL)
59 if (base==16) size —= 2;
60 else if (base==8) size—;

// WUREUE num 24 0, WIEI-ARFER="0" s 7 WIARHE 45 08 B SR ZOR £ num #4807 A5 T2 2.
61 i=0;

62 if (num==0)

63 tmp[i++]="";

64 else while (num!=0)

65 tmp[i++]=digits[do div (num, base)];

/) BB TR BT RGBS, WK e J o B Ef
/) BEREAE size W02 TAFBCEBUE T 45 N4

66 if (i>precision) precision=i;

67 size —= precision;

- 139 -

5.12 vsprintf. c F&%

// WX B ETFAR T T 75 B A e e b R, R I JBAE Z 75 R str b
[/ AR I (ZEROPAD) FIZE5ESE (AERHE) bk, WIFE str st
// SEUBORI 4% v PEAR AR I S M. 5T AT A, WA S .

68 if (! (type& (ZEROPAD+LEFT)))
69 while (size——>0)
70 *str++ = 7 7
71 if (sign)
12 kstri+ = sign;
/) AR AR IR A, DT)\ Bk A e 5 RSk A CE A 075 IS A N REBIUAAEC 0x
73 if (type&SPECIAL)
74 if (base==8)
75 *str++ = 77;
76 else if (base==16) {
7 *str++ = 77;
78 *str++ = digits[33]; // X 8 x
k) }
/) ERRPEA LR CESEF b, WFERIR SR P AR ¢ 747 C 0 BHg) , W 5147,
80 if (! (type&LEFT))
81 while (size——>0)
g ¥str++ = ¢;
// S i AFAHEE num FIECA AN BTN EUNTREEEAE, W st tRIRON OREfE-1) AY 07,
83 while (i<precision—)
84 *str++ = 77,
/) R HATF PR N str P 3R A
85 while (i——>0)
86 kstr++ = tmp[il;
/) FBEEEAIRT %, WFIREIFRE DA e fE 5 brbbn s e WIAEF A 56 B TN 4%
87 while (size——>0)
88 *str++ = 7 7;
89 return str; // RTEHGFH TR H
90 }
91

// T IR R IR A B AR R
// AT REAENZ AR, Linus EWAZSEIL T % C vk R 0.
/) HPSH fot EAE AT args BN EURIME; buf 24 AR MIX .
// S AR H) 3R 5 A A R E R 41
92 int vsprintf(char *buf, const char *fmt, va list args)

93 {
94 int len;
95 int i;
96 char % str: /) T A O O R b 7 R
97 char *s;
98 int *ip;
99
100 int flags: /% flags to number() */
101 /% number () &AL IFRE */
102 int field width; /* width of output field */
/% B B/
103 int precision; /% min. # of digits for integers; max
104 number of chars for from string */
/% min. HEHHCFANEG max. PRI +/
105 int qualifier; /% ’h’, ’1’, or 'L’ for integer fields #*/

- 140 -

5.12 vsprintf. c F&%

106 /%00, U B L B/
[/ SRR R R N buf, ARG AT, &S I R R AT AR Y B AR B

107 for (str=buf ; *fmt ; ++fmt) {
[/ RS R TP % IS, X EN fmt A& AR R %, R U A R TR
/] ARG LIRS) — I F R MAIRAEN str.

108 if (xfmt != %) |

109 kstr++ = *fmt;

110 continue;

111 1

112
// FHBAAH RIS AR e &, R ER RN flags BEH,

113 /% process flags */

114 flags = 0;

115 repeat:

116 ++fmt ; /% this also skips first % */

117 switch (¥fmt) {

118 case '—’: flags |= LEFT; goto repeat; // TERES TR

119 case '+’: flags |= PLUS; goto repeat; // NS .

120 case ~ ’: flags |= SPACE; goto repeat; // JWZH&.

121 case '#’: flags |= SPECIAL; goto repeat; // ZFpikiE#:,

122 case ’’: flags |= ZEROPAD:; goto repeat; // BIHZFEV0),

123 }

124
/) BCHNT S B S IAE, RN field width A8, Qi 5 5 FE b i S5 (8 0 B R B I by 9 A
/) WG ES R AT K, RN T ANSEARE . BUILIAH va arg HUGE AR . 5 I 58 B2 A
/) NTF 0, MRZFPBEERIAT A RS - b (BT, HILEFR AR SR RA RS, JIF
/) B P A A FLAE N

125 /* get field width */

126 field width = -1;

127 if (is digit (*fmt))

128 field width = skip atoi (&fmt) ;

129 else if (fmt == "#7) {

130 /* it’s the next argument */

131 field width = va arg(args, int);

132 if (field width < 0) {

133 field width = —field width;

134 flags |= LEFT;

135 }

136 1

137
// R BARRY, Bk S e AR RS PRI, FFIBON precision B, IR ER . .
[/ AP RE S b s B R Ak . o SRS R e S) B O RS A . n SRS BRSO
/] FREH KR FASEARENE . WILR va_arg BB . A ULNSEEENT 0, N
[/ BORS FE A B FLAE 0

138 /* get the precision */

139 precision = —1;

140 if (kfmt == ".7) {

141 ++fmt;

142 if (is digit (¢fmt))

143 precision = skip atoi (&fmt) ;

144 else if (xfmt == %) {

145 /* it’s the next argument ¥/

146 precision = va_arg(args, int);

- 141 -

5.12 vsprintf. c F&%

147 }

148 if (precision < 0)
149 precision = 0;
150 }

151

[/ PR BAG AT K EBTT, IR qualifer 8. (h, 1, L & XS ARG .

152 /% get the conversion qualifier */

153 qualifier = -1;

154 if («fmt == "4 || *fmt == "7° || *fmt == "L’) {
155 qualifier = *fmt;

156 ++fmt;

157 }

158

[/ N H AR R

159 switch (xfmt) {
/) AEREHARRATIE ¢y MIZRIRAT NS HOV AL T AT o PN W SRR SR A R A 5855, Wiz B
[/ RN TEEAE -1 DB, RGPS AR AR TG ESGE KT 0, WK N 25855, IHE
/) BECTRT G AN AT -1 A2 A% AT

160 case ‘c¢’:

161 if (! (flags & LEFT))

162 while (—field width > 0)

163 *str++ = 7 7;

164 *str++ = (unsigned char) va arg(args, int);

165 while (—field width > 0)

166 *str++ = 7 7;

167 break;

168
/) WREHARRAT L S”, WRIRXN NS UL PR H . RIS ECA AT R K, A 0 T RS e,
/) WY RERE =7 th K o eI AR S IE WA A 5555, WRZ P BTN (o JEAE -7 A7 B)
[/ ARG TR RGNS EC AT IR EEGE R T 0, WIS 55, WESE 747 RS
[/ I 8 PEA =745 B A8 ANk 74T

169 case 's:

170 s = va_arg(args, char *);

171 len = strlen(s);

172 if (precision < 0)

173 precision = len;

174 else if (len > precision)

175 len = precision;

176

177 if (! (flags & LEFT))

178 while (len < field width—)

179 *¥str++ = 7 7,

180 for (i = 0; i < len; ++i)

& *str+t = kstt;

182 while (len < field width—)

183 *str++ = 7 7,

184 break;

185

[/ IR KBTI o7, BN HG R N S B A)\ I 745 e o P number () AR B

186 case 0:

187 str = number (str, va arg(args, unsigned long), 8,
188 field width, precision, flags);
189 break;

- 142 -

5.12 vsprintf. c F&%

—
O
o

[/ IR KBTS p') FIRK NS EI— MR SIS S BB B T, R 98
/1 8, I EARE . R MH] number () BREGEATALPE

191 case p’:

192 if (field width == -1) {

193 field width = 8;

194 flags |= ZEROPAD;

195 }

196 str = number (str,

197 (unsigned long) va_arg(args, void *), 16,
198 field width, precision, flags);

199 break;

200

/) BRI SRE X 80X, MR NS HT 2T s NG - 7 x o NS PR

201 case ‘x’:

202 flags [= SMALL;

203 case X:

204 str = number (str, va_arg(args, unsigned long), 16,
205 field width, precision, flags);

206 break;

207

/) MEHRERTER @0 500 WEORA BB EREEN, 4, RIS DR S
/)RR RS

208 case 'd’:
209 case '1:
210 flags [= SIGN;
211 case ‘u’:
212 str = number (str, va_ arg(args, unsigned long), 10,
213 field width, precision, flags);
214 break;
215
[/ ARG R RAT R 0’y IR R B B H A4 (8 b i 1 A SR AT B0 N S BB e e AL
.
[/ BRI va_arg O WA ZSEERE, REH QAU 1715 B0 N Fa T FR AL 5
216 case 'n’
217 ip = va_arg(args, int *);
218 *ip = (str — buf);
219 break;
220

[/ BERERFHATARL W, MRS TR A, B A% GG S,
[/ RS SRR AT B AL B A AT, B ELER % R 5 NSt A, R 12 107 174k S4b
[/ BT H . AR 2 A PR S AF g AL, IR I ARA

221 default:

222 if (xfmt != "%7)

223 *str++ = %7,
224 if (xfmt)

225 *str++ = *fmt;
226 else

227 —fmt;

228 break;

229 }

230 }

231 kstro= "107; /) BRJE RS (AT R S5 R AR Eonull,

- 143 -

5.12 vsprintf. c F&/%

232 return str-buf; // BRI AT R A B

5123 HERFR
5.12.3.1 vsprintf OB R FH =

int vsprintf(char *buf, const char *fmt, va_list args)

vsprintf() BRI EUE printf() RANERELL — o IXEEpRHHS ™ A AL I T B2 i HE A X i U
Frep fmt, S ERF BN ORI S HOA TR A, AR R

printf B304 3% SR S T AU AR stdout. cprintf 304 H X FIFE 4 o fprintf $E4 H 3% 3 S0 AR o
printf FI 7V (1 1 vprintf) R RSB0 M va_arg ZUALIK va_ list args 552 . printf 57T S 4 U
Font L B LA null 85 R IZAFH buf e GRS REAfiOR buf A3 2 88 (10 23 (B4 F AT Do N I T4
Ut IS ST R A 702

1 T4

printf ZR 51 bR KPR RS 2075 o gl R Moy 5 s AR i S B) A%, 820
XIS, SRR BN . R PR R R S AT PR, — PR B SR 2) g o
FAFs TR R N S B AR A e s A R

2. HeRFER TR
RN =PI LU W
%[flags][width][.prec][|h[l|L][type]
AN R R BT LU A 40 (%) THah . Horp

[flags] ol Bri e A1) AV X KAA IR

[width] JE] IR PRI 58 BE RN AT s

[.prec] & AT PR KRS B (precision) R 78 4 5
Lol R 1 Bt = 1O E NS X TR

[type] SRR FIF (SRR R AR IRTT) o

flags bl i xt 757 BErrs . Ao BE. bR \ERE Nt RS, S0 sk
27-33 AT IVERE . FRas AT S LB LU R

TR T BN S B R AR, 61 \EEI(0), TUVFE I i 6 7 45 3 1R 1 DA 40
e AF . T NHERI(x B X), TS A T LUOXEOX k. AT e EfRg LAK G, JUJRIAE
BN, et AR B2 — A M. X T g8, JEHEmERASMER.

0 A RN AZE R . AT dioux X.eEfg Ml G, s B 22k H B AT AN &
FAZ8 Mo QR EIRS L 0 FI-brds, WU O AR bl 2 o X Ak ¥, Wilfeh i TR, O bRkl
2

S I 25 AR A N 7 BOA SR A EE G/l CERIAREATTRSE--5E 40D . n B dpl
Ab, HA g BB AT T A

a TR S A= 0 — AN IEE s AT A% B — A8

+ FORIE— NG A R 2 TR T IR — M5 (FE . X TERAE B, U Sl
5.

- 144 -

5.12 vsprintf. c F&/%

width 455 7t P AT H TR, RIFEE T 7 B/ N ERE(E . U SRR N 4 R AR E (1 S8 P/
WIAEIE /el (BEATL, WERE I T /e ashn) F ek sl (i1 flags Arasifisg) MO EEE. B
T AT B SG E TESE I LAAh, thu] DURE AT oK A B sE i B — MRS . A E T
KT width $55E K98RN, AEAETEIL T AN LA A SR E R TRy R A S e a8 R,

precision & 15t B4 H 20T RS RD K. 6T d,Lo,ux R X 4, RS FEAE R T A H AT I A
XT e Ef M F, AR AN BLECT AN X T g B G, FR o KA R AN T
s Il S B, RS EAE VLW A ER R B oK AT E

KREEBMER AT U B T BB n (5 SR, R iRuA T A A0 diioux
X Bl

hh Wi T (KR R ot B AN RS PR B S TR S AL
h B T) BB O] N — AN AT 5 RO S R S A

I B T) BB] I — KB S KRR S K
Il Wi T (R R ot B AN KR A 5 K KB S K
L W] e, EfFg B G s R W T MU EE S L

type s U W52 (A A S HR LR S HH RS 2o B AN AR /R FTIR & LAnh

d,l U S HOR AN 55 B W RATHRS I (precision) (15, WUIZS HY T B4 H 1) fre 2D
By A E RPEH BTN, SRR E . BOARR LR 1.

ouXX SHFTEAT T AR O AT 5)\JERI(0)s TafF 5T (u) B R TERF 5o il (x 5k
X)#os Xt o x FoRBAT /NG RE (abedef) KRR HNEEIEL X RomH KRS 5-1F (ABCDEF)
R TN A RAFAERG BER T, VLW B R DR B W R K A B D
MR %E . BRIAIRE R 1

eE KA AR A5 T 220U A S5 [-]d.ddde+dd 1B MEURZ R 8074
HEETHERE . WIRBA RN, sBCROAE 6. WAKEREZ 0, WIBA ML E RIS TR E
KAFNIREL FREGE 7 B2 2 (807 o . WARAE O 0, B AR 8092 00.

fF AN AT T2 DU B TR ZHC ek [-1ddd.ddd RT3 /NN 2)i B0 AN B4E
THEE . WURBARG S, AUHRERIAE 6. WIARNEREZ 0, WA/ MU BL. WERAT N, A i T
Mo 1A

9,G XA PR SHOAR) £ 5 e AR (SR G, WIJE F el E #30. RGBT E T
RN EL . AIRBATRG R, HER B 6. W SRAEE R 0, WIVEDN 1 oRxi o U REL N fa 40 T
-4 UK TAETRERE, MR e #akle N B ZRMIBR . ACSR A — R0/ NN 425 BN
Mo

c SRR AR IO 5 75 I e e

S SOREATAR I TR KR, JFHAZTAT A ZELL null 85 . WUERATRESESR, - RS
FEFT SR AT I H 4T R IoZ A null 45 .

P DR U /NS

n FFEE H A e ki 0 7 A5 B Ar 21t e DA AR HE € A B T . A S Kt
AT

% Bt —NE %, AT ABE IR AN R IR %% .

- 145 -

5.13 printk. c &%

5.12.4 5EH AR X5
T2t B TR, T LA 1.2 B R TF At B B PR 2 P) s 5 T o BN T %S0

5.13 printk.c 2%

5.13.1 I gEA

printk()J& WAZ A AT ED CE2oR) A%k, Thigs C AsvERREE 16 printOM A . FEHdm G IXA—
A R B R R AE AZ R REAE % F T P A fs Bearfras, Ty sbiiar e . printk() B3 s
H svprintf() %) ST KALALEE, SR)GFECRAE T fs BEA e tE oL IR tty_writeHEAT (5 S AIFTED
R,

5.13.2 X138

B 5.12 linux/kernel/printk. c 2%

1 /*
2 % linux/kernel/printk. c
3 #
4 * (C) 1991 Linus Torvalds
5
6
T /%
8 * When in kernel-mode, we cannot use printf, as fs is liable to
9 # point to ’'interesting’ things. Make a printf with fs-saving, and
10 #* all is well.
1 #/
/%
* BALT AR, RATABEMT printf, R AEES £s 5 10 H e AN EOSBRIF) 3 Ty .
* H Ol printf FAEAHERAE £s, — VIR T S
*/
12 #include <{stdarg.h> /) FHESHCK A . TR E RS HAIR . R T4
// KA (va list) fl=A % (va_start, va arg fll va_end), HTF
// vsprintf. vprintf. vfprintf H%{.
13 #include <stddef.h> /) bR LS. 5 T NULL, offsetof (TYPE, MEMBER) .
14
15 #include <linux/kernel.h> // WAZKICHF. &AL ML H R B 58 & L.
16
17 static char buf[1024];
18

// FHZEE vsprintf () 76 linux/kernel/vsprintf. ¢ F' 92 4T FF 4G
19 extern int vsprintf(char * buf, const char * fmt, va list args);
20

/] RZAL I Sl s R
21 int printk(const char *fmt, ...)

22 {

23 va_list args; // va_list SEpr Fj— N FERFaEr AL

24 int i;

25

26 va start(args, fmt); /) SEAHITIR . #F (include/stdarg. h, 13)

- 146 -

5.14 panic. c &%

27 i=vsprintf (buf, fmt, args) ; // ARG fot K S HAK args il 2] buf .
// IRIPME 1 & T R s K.
28 va end(args) ; [/ BEAE B I R A .
29 _asm__ (“push %%fs\n\t” /] 1RAE fso
30 “push %%ds\n\t”
31 “pop %%fs\n|t” /) & fs = ds.
32 “pushl %0\n\t” /) B ERFR A E R AR X = A A T 240 .
33 “pushl § buf\n\t” // ¥ buf FIHbhEE AHERE
34 “pushl $0\n\t” /) BEUE 0 I AHEFR . &85 channel.
35 “call tty write\n\t” // VA tty write BB (kernel/chr drv/tty io.c, 290),
36 “addl $8, %%esp\n\t” // kL (EF) WP AKSE (buf, channel) .
37 “popl %0\n\t” // SRR AR, AE IR IME .
38 “pop %%fs” /] WEIR fs D70
39 227 (1) Tax” Tex) Tdx) /) BENGRIERY, TALAR ax, ox, dx (HA R LA MR,
40 return i; /) BRI
41}
12

5.14 panic.c ¥

5.14.1 ThggHgiR

N AZRE T AR, R pR T panic(), RoRERAE BT RGN TUNER . LN IZFR T VR MY
Ji A U E AN AL B . EIRZEOLT, AT panic(rREUE MR IR AL B . X
FEMAR L HBIEAE 7 UNIX “ SRR (R),

panic & “ffie, ANi” M=, 7 Douglas Adams [1)/Mit (Hitch hikers Guide to the Galaxy) ({4
WA TRATH AR b, P 21— R 2 “Don't Panic!”. 1% &R FI/INJE linux 5% 75 55 [15211
— KA.

5.14.2 REBER
5Iz% 5. 13 linux/kernel/panic. c ¥2fF

J*
* linux/kernel/panic. c
*
* (C) 1991 Linus Torvalds
*/

/¥

#* This function is used through-out the kernel (includeinh mm and fs)

* to indicate a major problem.

*/

/%

* LB NP CRFSE SKSC h, WAAEERER o fIOSCHE RS £s),
w FHULER HH B0 e n)

*/

11 #include <linux/kernel.h> // WAZKICfF. & S8 N RH H BRE0W 5B € Lo

—
|O [O [CO |3 |0 |01 v [DN [—

- 147 -

5.15 AFE/hgh

12 #include <linux/sched.h> // PRERFRICHE, 8 X TAES45H task struct. #IEHIESS 0 4R,
/] A A IR T S B E AR R N 2 G bR B TR

= 1=
NI

void sys sync (void); /* it’s really int */ /% SZfp 23R int (fs/buffer. c, 44) */

—
(@]

/) ZERBR B s A BLREREHR G R, JFIsiT U R G R s, RIGHENTENE3S — FEbL.
[/ WFCH TR AT S5 0 10, Ul A HAT S5 A, IF BB WA 12T 30 REE R D R 4
16 volatile void panic(const char * s)

17 {

18 printk ("Aernel panic: %s\n\r’,s);

19 if (current == task[0])

20 printk (“In swapper task — not syncing\n\r’);
21 else

22 sys_sync () ;

23 for(;;);

24}

25

5.15 AREFE /&

linux/kernel H 3% N1 12 MU SCARE T WA S0k L —Se LRI s), R EaRE R .
PR . HERE A I DL AR () 2 1 B A HE DU 4

- 148 -

6.1 #id

H6E g & IKFFE T (block driver)

6.1 ik

BIFE 6.1 linux/kernel/blk drv B

DY UL B Ber A (GMT) {HH
E]l Makefile 1951 bytes 1991-12-05 19:59:42 m
€3 blk.h 3464 bytes 1991-12-05 19:58:01 m
83 floppy.c 11429 bytes 1991-12-07 00:00:38 m
63 hd.c 7807 bytes 1991-12-05 19:58:17 m
€71 11 rw blk.c 3539 bytes 1991-12-04 13:41:42 m
£ ramdisk.c 2740 bytes 1991-12-06 03:08:06 m

6.2 BKIhEE

XA R A bR i e b MR 1) 52 5 A R T L P T AR B P AT I BRI B R L IR R B
(1024 545) Jipfr. fEACBIERE, A T I S SREEAF AT S — RS AN IR P R4t

R B U AL IR Z RN, oy) G2 DA BERE B S, TR (R E R U R A N
HRPIRAS . Geph DR LR Y 1 SEAE G DX R DU A DO X B . WRGEIX BT T
L ELEHE R B I R R X HUL AR EHIR [P RE P I MM iR PP R o 7 o X A AR TR B B,)22
P B T o VA A B P R S pR 5 11 _wr_block(), & AN EEH B IR T SRk . iR B2
TR QU — MR G, Il AT RS BTSRRI AV, L L2 i 2 i & 1)
YRR K a2 o IR R B A BRI Gerh b, R W RAE S, JFRETR
ESRILRE, RHAR R BB EAT R ARV R B Gt s A SOFThR &, o Ja MR S A 12 s PR R

AFEREFPACE I ThRERT 70 0 = Ffte [B A 2X]

6.3 Makefile ¢4

6.3.1 TIgEHEIA
1% makefile SCAH T BEX A H 36 F I A 127 1 9m3
6.3.2 KGR
BF 6.2 linux/kernel/blk drv/Makefile {4

Makefile for the FREAX-kernel block device drivers.

Note! Dependencies are done automagically by 'make dep’, which also
removes any old dependencies. DON'T put your own dependencies here
unless it’s something special (ie not a .c file).

N[O o1 [o DO |—
H H H H H H 3 =

FREAX AR B 25 SR SR /7 1) Makefile SCPF

- 149 -

6.3 Makefile 3Cfi

— = ==
|"-*J |N |>—‘|O |<© |Co

—
(IS

—
(@a]

—
[op)

—
-3

R KEOCR A H make dep’ HBNHMTHI, B4 A B LR EOR MRS B . AR E
OO A A BUBEX L, AR) SO (B EDAS & —A ¢ ST RO .
(Linux W04 20 FREAX, J5oKk#Y ftp. funet. £i AU B BE Linux IXANZE) .

AR =gar # GNU B —HEHI SO BERE S, A T-00a . B LR VRS SCAErh dh O

AS =gas # GNU FIVC9mA.

LD =gld # GNU FIEHAH.

LDFLAGS =-s —x # EBERIPIIANSE, —s il ST Ams a5 515 8. —x MBI RS .
cC =gcc # GNU CiESgmitrs.

AT C PR IE . —Wall SR A s E R -0 kD, PEA AR K BEFPAT I 7] 5
—fstrength-reduce UALTEAPATINY, HiFTEE A E; —fomit-frame—pointer 4 BEARAEA DAEE
MHESLIRE: —fcombine-regs B I AT ffdn, WD FFAAARAIMH; —finline—functions ¥4]
RN RS IR AN P —mstring-insns Linus B CHMRAETR, LS AT
-nostdinc -1../include AM¥ I BRIABE 2 0B & SO, Tl e e HaH1 (. /.. /include) .
CFLAGS =-Wall -0 —fstrength-reduce —fomit-frame-pointer —fcombine-regs \
—finline—functions —mstring—insns —nostdinc -I../../include
CHATACHIIET . —E HUg4T C A, XHraHaEn C F2 P AT A 21 36 b 21 25 S th B b iy
A ke B W SCEY s —nostdine —1.. /.. /include [T
CPP =gcc -E —nostdinc -I../../include

NI AR 7R make AR TR AT HE BT A 0L ¢ SCPFgRIRAE AR s TEGRRE)T o UK dir &
54l gec SKHJ CFLAGS BT s fa Iin C A2 P8 Jo AIEATVE Gt 1k (=S) , A=Aty
IS C TR RS SO o BRIAEOL T B AL ARV G R 7 SCAF 44 8 it € ST 44
LB b s Jag. —o RonIna i XA AR, s s (2i$e) fE A3 H iR,
SAURE e A, IEHRARFF G 4. ¢ KISt

18 .c.s:
19 $(CC) $(CFLAGS) \
20 =S -0 $*x.s §<
NIRRT s IR 7 SO PR K. o H RSO 22 47 /2 SEIZERVE I B AR dr &
21 .s.o:
22 $(AS) —c -0 $*.0 $<
23 .c.o: # BB, * ¢ X% 0 HERSUF. AHHATIER:.
24 $(CC) $(CFLAGS) \
25 -c -0 $*.0 §<
2
27 0BJS = 11 _rw blk.o floppy.o hd.o ramdisk.o # & X HFr AR & 0BJS.
28
{5 TS RGAT OBIS Ja Al H T i i i 232 i H AR b1k drv. a ESCA.
29 blk drv.a: $(0BJS)
30 $(AR) rcs blk drv.a $(OBJS)
31 sync
32
NHEA B TAE. 24347 make clean’ I, mt&$hAT 34-—35 47 EHIar4, ZBRATA 9%
BRSO e’ RSN R A S, - 5 SO B AR SO, I HA BRI RS B
33 clean:
34 rm —f core *.0 *. a tmp make
35 for i in *.c;do rm —f basename $$i .c .s;done
36

NS H bR s TR A SO TR KOS R . TV

AT R AR sed X Makefile SCfF CRIJEASCH:E) HEATALEE, #H A MR Makefile

SCPFH ### Dependencies’ 17EIHIMATAAT CRIHM 44 FFUGHIAT) » FFAERK tmp_make

G SCEE (38 ATHIMERD) o SRJE%) kernel/blk drv/ H 3 A C SCAFHAT gee TADHER/E.
M bR VR TIAL BEFL 7 4 H H IR AN H AR SCEFAHDCHE IR, I FOX SR 75 75 make 1925

- 150 -

6.4 blk.h 3CffF

O TG —ANESC, FRANERR R — A make FUIU, HL4E B R SR AH N YRR Y SO B bR
SO AL AR O R IR SO S T S SO SR . HE AL 4 SRS I 2 1 s
SCHF tmp_make HY, AR JE KRR IZ I I SCAE R RGHT) MakeTile ST

37 dep:

38 sed ' /\#\#\# Dependencies/q < Makefile > tmp make

39 (for i in *.c;do echo —n "echo $$i | sed s, \.c,\.s,” 7 7; \
40 $(CPP) -M $$i:done) >> tmp make

41 cp tmp make Makefile

42

43 #### Dependencies:

44 floppy.s floppy.o : floppy.c ../../include/linux/sched.h ../../include/linux/head.h \
45 ../../include/linux/fs.h ../../include/sys/types.h ../../include/linux/mm. h \

46 ../../include/signal.h ../../include/linux/kernel.h \

47 ../../include/linux/fdreg.h ../../include/asm/system. h \

48 ../../include/asm/io.h ../../include/asm/segment.h blk.h

49 hd.s hd.o : hd.c ../../include/linux/config.h ../../include/linux/sched.h \

50 ../../include/linux/head.h ../../include/linux/fs.h \

51 ../../include/sys/types.h ../../include/linux/mm.h ../../include/signal. h \

52 ../../include/linux/kernel.h ../../include/linux/hdreg.h \

53 ../../include/asm/system.h ../../include/asm/io.h \

54 ../../include/asm/segment.h blk.h

55 11 rw blk.s 11 rw blk.o : 11 rw blk.c ../../include/errno.h ../../include/linux/sched.h \
56 ../../include/linux/head.h ../../include/linux/fs.h \

57 ../../include/sys/types.h ../../include/linux/mm.h ../../include/signal.h \

58 ../../include/linux/kernel.h ../../include/asm/system. h blk.h

6.4 blk.h 344

6.4.1 ThgEHEIA

XA MR & S E L SCE, R Rk &, BTl S8 A e [Rl— ANy . o 2
B T SRR BAS TR I R B s 4544 request, FHZEVE R LT BRI R AL, R0 AZ B RSO RE L
B, BERLRAREE =M g, R T BN R & T R N T AUE .

6.4.2 REGERF
B 6.3 linux/kernel/blk drv/blk.h 3
1 #ifndef BLK H
2 #define _BLK H
3
4 #tdefine NR_BLK DEV 7 /] PRI E R
5 /%
6 * NR_REQUEST is the number of entries in the request-—queue.
7 * NOTE that writes may use only the low 2/3 of these: reads
8 * take precedence.
9 *
10 * 32 seems to be a reasonable number: enough to get some benefit
11 * from the elevator-mechanism, but not so much as to lock a lot of
12 * puffers when they are in the queue. 64 seems to be too many (easily
13 * long pauses in reading when heavy writing/syncing is going on)
14 #/
/%

- 151 -

6.4 blk.h 3CffF

% N0 E S NR_REQUEST S 1 SR BAA v i 4 35 A TUKL

* VER BRERAEOUE I LE IR 1 2/3; BRERAEILEAL R

*

% 32 WUF R — DO HIECT: O NSRG4 it

s AH 222 pPIXAE A AL I AN B RIS, 64 B -

* ZRKT CHRENS/FDHREBITIRE S5 ERI R E .

*/
15 #define NR_REQUEST 32
16
17 /%
18 #* Ok, this is an expanded form so that we can use the same
19 # request for paging requests when that is implemented. In
20 # paging, 'bh’ is MILL, and ’waiting’ is used to wait for
21 * read/write completion.
22 #/

/%

% OK, N request 85— BIE, B SEIBLS, FAT T80 nT LAFE 23 5 sk
* I FIFEM request 258, E4 TUALEEH, " bh’ & NULL, 10 waiting’ TSR3/ 5 M5E K.
*/
// IR RBAF I g A . Hoh R dev=—1, MR IBATHALH] -
23 struct request f{

24 int dev; /* -1 if no request */ // KIS .

25 int cmd; /% READ or WRITE #/ // 4 (READ B WRITE) .
26 int errors; [/BAEI 7 AL B R R

27 unsigned long sector; // IR . (1 He=2 BIX)

28 unsigned long nr sectors; /) /5 R I

29 char * buffer; /] ARG .

30 struct task struct * waiting; /) AR R EIAT S8 I BT

31 struct buffer head * bh; /) GEh X 3kFE4EF (include/linux/fs. h, 68) .
32 struct request * next; // Fgla R IR I,

33 1

34

35 /¥

36 * This is used in the elevator algorithm: Note that
37 * reads always go before writes. This is natural: reads
38 #* are much more time—critical than writes.
39 #/
/%
s N E ST B TR R R AR S B AT kAT .
* IXJEAR HARM: BLERAEXT IS R] PR SR L S AR AR 2 .
*/
40 #define IN _ORDER(sl, s2) \
41 ((s1)—>emd<(s2)->emd || (s1)—>emd==(s2)—>cmd && \
42 ((s1)->dev < (s2)—>dev || ((s1)->dev == (s2)->dev && \
43 (s1)->sector < (s2)->sector)))

/] A& E
45 struct blk dev_struct {

46 void (krequest fn) (void); [/ BRI BB
47 struct request * current request; // KRG ELH.

48 };

49

50 extern struct blk dev_struct blk dev[NR BLK DEV]; // BHed#%4l, BERhH &5 T,

- 152 -

6.4 blk.h 3CffF

51 extern struct request request[NR REQUEST]; // ESRBAFNEA .
extern struct task struct * wait for request; /) SERRE SR IAT 5 454

#ifdef MAJOR NR /) ERET,

* Add entries as needed. Currently the only block devices

52
53
54
55
56 /%
57
58 * supported are hard-disks and floppies.
59

*/

/%

* FFEMIAGH . HArR & 0GR Ak s OoF B .

*/
60
61 #if (MAJOR NR == 1) // RAMBEE WA T4 Lo MHEX B e T DAHERE A fE sk 2 e 5 o4 1o
62 /% ram disk */ /% RAM 3 (AP */
63 #define DEVICE NAME “ramdisk” /) WA HR ramdisk.
64 #tdefine DEVICE REQUEST do rd request // WK do rd request ().
65 #define DEVICE NR(device) ((device) & 7) // %5 (0—7).
66 #define DEVICE ON(device) [/ TR . AU JEZUT E A G
67 #define DEVICE OFF (device) /] R
68

69 #elif (MAJOR NR == 2) // HKIKFIEBRHK T 2.
70 /* floppy */

71 #define DEVICE NAME “floppy” /) WA LFR floppyo
72 #define DEVICE INTR do_floppy // BT BEFEFR do floppy ()
73 #define DEVICE REQUEST do fd request // BEHEREEH do fd request ().

74 #define DEVICE NR(device) ((device) & 3) // #&#%%5 (0--3) .
75 #define DEVICE ON(device) floppy on(DEVICE NR(device)) // JF/aw#ea% floppyon() .
76 #define DEVICE OFF (device) floppy off (DEVICE NR(device)) // S5HI¥ £ A%k floppyoff () .

78 #elif (MAJOR NR == 3) // M F#&TE 3.
79 /* harddisk */

80 #define DEVICE NAME “harddisk” // HEAE K harddiske

81 #define DEVICE INTR do hd // W& FWAREEREY do_hd() .

82 #define DEVICE REQUEST do hd request // A K RE do hd request ().

83 #define DEVICE NR(device) (MINOR(device)/5) // %5 (0—1) o FAEHE AT LAFT 4 DX
84 #tdefine DEVICE ON(device) /) WA EAE AR, ORI .

85 #define DEVICE OFF (device)

86

87 ttelif

88 /#* unknown blk device */ /* KA */

89 #terror “unknown blk device”

90
91 #endif

92

93 #define CURRENT (blk dev[MAJOR NR].current request) // CURRENT Jy#fiE T ¥4 5 M4 RTiG K &5 H o
94 #define CURRENT DEV DEVICE NR(CURRENT->dev) // CURRENT DEV >4 CURRENT (¥ % %5 »

95

96 #ifdef DEVICE INTR

97 void (*DEVICE INTR) (void) = NULL;
98 #endif

99 static void (DEVICE REQUEST) (void);
100

- 153 -

6.5 hd. c f&)¥

/] RETIBE g X
101 extern inline void unlock buffer (struct buffer head * bh)

102 {
103 if (Ibh->b lock) // WERARE X bh JERA R BB, R R R
104 printk (DEVICE NAME ~: ffee buffer being unlocked\n”) ;
105 bh—>b_lock=0; 7 MK 1% 52 1 DX A
106 wake up (&bh->b_wait) ; // M i S5 1% G I DX)RR
107 }
g@
gE TR
l_g extern inline void end request(int uptodate)
110 {
111 DEVICE_OFF (CURRENT->dev) ; /) KA
112 if (CURRENT->bh) { // CURRENT by & F= e £ 5 1) M i i SR 4544 o
113 CURRENT->bh—>b_uptodate = uptodate;// B W #Hibrid.
114 unlock buffer (CURRENT->bh) ; /] DR ITIX
115 }
116 if (luptodate) { // WERBFRRE A 0 W) BoR s 5 iR B
117 printk (DEVICE NAME ~ 7/0 error\n\r”);
118 printk (“dev %04x, block %d\n|r”, CURRENT->dev,
119 CURRENT->bh—>b_blocknr) ;
120 }
121 wake up (&CURRENT->waiting) ; // WRERAE R 1Z05 SR TR HEFE
122 wake up(&wait for request); // BRI SR R
123 CURRENT->dev = —1; // BB K I
124 CURRENT = CURRENT->next; [/ I SRR MR 11 K I
125 }
126

// e AR K -
127 #define INIT REQUEST \
128 repeat: \
129 if (!CURRENT) \ // AR A ETE R SRR E D null IR (A
130 return; \
131 if (MAJOR (CURRENT->dev) != MAJOR NR) \ [/ U0 A I T BT AKX IZER L
132 panic (DEVICE NAME ”: request list destroyed”); \
133 if (CURRENT->bh) { \
134 if (!CURRENT->bh—>b lock) \ // RAE AT SR A I 2 X B e BB
panic (DEVICE NAME ”: block not locked”); \

O [Co

—
w

—
(IS

—
w
(@a]

— =
W (WL
=[O

f—

ttendif

— = =
(oSl [Vl (]
S o [co

ttendif

—
(IS
—

6.43 HEER

6.5 hd.c 2%

6.5.1 TIgEHEIA
hd.c FF 3 B O A B A6 1 B S R R A AR T D BRI 20 =0 S R P T

- 154 -

6.5 hd. c F&J¥

Wi AL PR R R %5, 1 do_hd_request(). read_intr()F write_intr(): 55 2RSE FH T WA A A5 R U A A
T FH B0 5 /I 1 eR B0, i sys_setup() R hd_init(); 55 = 2R B 0 Al A) A dR AR i s H e B,

controler_ready(). drive_busy(). win_result(). hd_out()F reset_controler()%%.

6.5.2 REEE R
B 6.4 linux/kernel/blk drv/hd.c 2

linux/kernel/hd. ¢

*%%}

(C) 1991 Linus Torvalds
*/

J*

* This is the low—level hd interrupt support. It traverses the

* request—Iist, using interrupts to jump between functions. As

* all the functions are called within interrupts, we may not

* sleep. Special care is recommended.

*

* modified by Drew Eckhardt to check nr of hd’s from the CHOS.

*/
/%

* AFET L EERL P W B AR . BB TR R AR, A WL R A kL
s T I)RR B AR T BLE A, BT DX G pR AN T DRI . TR A
% /I] Drew Eckhardt 1524, F/H CHOS 17 & #7000 447

*/

— == ==
|>-J> |DD |N |'—‘ |O [© |00 |3 [0 U1 [[DO [—

| I
o o

#tinclude <linux/config.h> // WHIEHCE KO 58 SCBE BTG 5 AR AL 28 (HD_TYPE) mJ &L,

#include <linux/sched.h> // WEEFEFLICME, X TAESSH) task_struct. FIUHAES 0 %,
[/ B —YE IR TS E 0 S FERE A i N ST 2 pR B S TR A .

#include <linux/fs.h> /] XAERG L. B XSRS R (file, buffer head, m inode 28) .

#include <linux/kernel.h> // WHIKICHE. & —Se A% H e B0 J5UE & o

#include <linux/hdreg.h> // S HCELM. & X Ui MR 25 A7 dsm 1, RS, X EEGE R

#include <asm/system.h> // REEKMF. 8 LT BCE BUE SRR T/ W15 RN 09 %%

#include <asm/io.h> // o SkICAF. s SCREAF S AR ON /4 H I dm i)

#include <asm/segment.h> // BdfffskiCfl. & T KRBT a BRI BN T 9 2R 20

—
-3

1S 1< I

[\
—_

#tdefine MAJOR NR 3 // WELFE R AT 3,
#tinclude “blk.h” /) BRBERG M. SO SREG S5 1) . BR5e 28 B 45 M) RN 2 bR A R

#define CMOS READ (addr) ({ \ // i CMOS %% k¥
outb p(0x80]|addr, 0x70) ; \

inb p(0x71); \
1)

/* Max read/write errors/sector ¥/

#tdefine MAX ERRORS 7 [/ B/ BN X R 2 AR IR

#tdefine MAX HD 2 [/ BRESCRNER 2 A R

static void recal intr (void); // T WiFe 46 57 A B2 8) B0 1E 2R 2 (287 47) ©

static int recalibrate = 1; // EHKRIEmE.
static int reset = 1; /) BAbRE

QO[O0 QO | WO [Lo (WO | Lo DN DD DD DN DD DD DO DD
ISIBIBISIEISIRIEEZISRBIBSIEISIRISIE]

- 155 -

6.5 hd. c F&J¥

41

412 /*
43 % This struct defines the HD’s and their types.
4“4 #
/% N E LT RS HORTY */
/) B FBOY MR HERE . RETE R R B RTTMAAT T R R X L
45 struct hd i struct {
46 int head, sect, cyl, wpcom, 1zone, ctl;
47 b
48 #ifdef HD TYPE // IR EEAE include/linux/config. h H5E LT HD_TYPE---
49 struct hd i struct hd info[] = { HD TYPE }; // HU& XUFHIZHAEA hd info[]H)%ds.
50 #define NR_HD ((sizeof (hd info))/(sizeof (struct hd i struct))) // iI&lHE.
51 #else // A, H#Ek 0 1H
52 struct hd i struct hd infol] = { {0,0,0,0,0,0}, {0,0,0,0,0,0} };
53 static int NR_HD = 0;
b4 #endif
55
/)8 SRR XG5 o 2 tREAS 73 DX B A6 B X5 0 DO DR
// Herpr 5 (ARG BAR I (540 hd [0J A1 hd [5]45) ARAEA R T IS .
56 static struct hd struct f{

b7 long start sect;
b8 long nr_sects;
59 } hd[5*MAX _HD]={{0, 0}, };
60

// 3 port, L1 nr 7, fRAFAE buf 1,
61 #define port read(port, buf, nr) \
62 asm_ (“cld:rep,insw”.:"d” (port), "D” (buf), “c” (nr): "cx”, "di”)

// BuiH port, L5 nr %, M buf PHUEE.
64 #define port write(port, buf, nr) \
65 asm (“cld;rep;outsw”::"d” (port), 7S” (buf), “c” (nr): “cx’, “si”)

67 extern void hd interrupt(void);
68 extern void rd load(void);

70 /* This may be used only once, enforced by ’static int callable’ */
/% NN B BUERT UGN B — k. FERSR & callable fE AT bRE. */
// GRS HPIIGALFRF init/main. ¢ B init FREFEE NFE R 0x90080 Ab, BANTEHGE setup. s
// TR M BIOS BUASHK) 2 MEEL AR S HE (32 7). MR SER GBS N VAR S Ui .
[/ AR IRE A CMOS FIAE L 4R 5 B, T B AL 4> X 858 hd, IR N2 RAM R FU4E A0
/] W RG.

71 int sys_setup(void * BIOS)

72 |

73 static int callable = 1;

74 int i, drive;

75 unsigned char cmos_disks;
76 struct partition *p;

77 struct buffer head * bh;

78

// WIRAEI callable=1, iz TiXBREIN K IR E R 0, EARBIREHAT K.

79 if (!callable)
80 return —1;
81 callable = 0;

- 156 -

6.5 hd. c F&J¥

82
83
84
85
86
87
88
89
90
91

92
93
94
95
96

// WIRBEATE config. h e SUHEEE S H0 M 0x90080 Abisz N o
#tifndef HD TYPE
for (drive=0 ; drive<2 ; drive++) {

}

hd info[drivel.cyl = *(unsigned short %) BIOS; // AETHH

hd info[drive]. head = *(unsigned char *) (2+BIOS); [/ TEE

hd infoldrive].wpcom = *(unsigned short *) (5+BIOS); // SHiTIHAMEFEIS .
hd infoldrive].ctl = *(unsigned char *) (8+BIOS); // B,

hd infoldrive]. l1zone = *(unsigned short *) (124BIOS); // Wi LEFEXAHS .
hd infoldrive].sect = *(unsigned char %) (14+BI0S): // &HHiIE X%
BIOS += 16; [/ BRI SHCR K 16 775, IXHL BIOS fig1A) K.

// setup. s FEFFAEH BIOS Hh AOREAE S B A5 BN, WSRIUE 1 AMBERE, 2 leons 2R 2 ML Y
// 16 FATARIREE . DI AR 2 AN AR IO 7T 0 T BLAE AT WA B 2 MERE T

if (hd info[l].cyl)
NR_HD=2; /) WRECE D 2.
else
NR_HD=1;
ftendif

// BLERRERL AR IA R X S M X B P g %5 & (S WATE 5 A R .

for (i=0 ;

J*

*/

/%

iKNR_HD ; i++)

hd[i*5]. start_sect = 0; // WG B IX T .
hd[i#5]. nr_sects = hd _info[i]. head*

hd infoli]. sect*hd infolil.cyl; // M3 E 5 X 4.

We querry CMOS about hard disks : it could be that

we have a SCSI/ESDI/etc controller that is BIOS
compatable with ST-506, and thus showing up in our
BIOS table, but not register compatable, and therefore
not present in CMOS.

Furthurmore, we will assume that our ST-506 drives
{if any)> are the primary drives in the system, and
the ones reflected as drive 1 or 2.

The first drive is stored in the high nibble of CMOS
byte Ox12, the second in the low nibble. This will be
either a 4 bit drive type or Oxf indicating use byte Ox19
for an 8 bit type, drive 1, Oxla for drive 2 in CMOS.

Needless to say, a non—zero value means we have
an AT controller hard disk for that drive.

* JRATIGT CMOS F5 SChfi B ()15 AT SepRBE: n RS U FE RIS, FRAT 14— Bk SCST/ESDT /451
* EEs, e ST-506 J5 305 BIOS M, HIma IR BI0S 4R H, (HEINA
* JEAAFRMAN, IXEESHAE OM0S 1 XUARTELE

* AN, BAMEGSE ST-506 IXzhas CUIRA G ARG T IR 3, WRILIIKE) 8% 1 8% 2

* LI IR -

* 9 1 ANIRED BB ON0S 45 0x12 MR 750, 38 2 MRS 70 . % 4 Rty

- 157 -

6.5 hd. c F&J¥

* fE AT DU IRBh A A, B AT AU OxTe Oxf Rl H CMOS 7 0x19 A5 VE N KB 8 1 (1) 8 4ir
* RAVFTT, AITH CMOS H 0x1A T 1E N IR h 2% 2 [RA AT,
* B2, —ANIEREBEWREBAE A AT # I 3E 0 A IK B4 .

*/
124
// X AR b JUE A g B B A A A AT SRR AR A . A K CMOS 15 BiE S I 4. 2. 3.1 15,
125 if ((cmos_disks = CMOS READ(0x12)) & 0xf0)
126 if (cmos_disks & 0x0f)
127 NR_HD = 2;
128 else
129 NRHD = 1;
130 else
131 NR_HD = 0;
// # NR_HD=0, WIPGAREELAASAE AT FIgs e 200, B Hdn 45 s % .
// # NR_HD=1, JUPREEE 2 AMlfE M S 805 % .
132 for i = NRHD ; i <2 ; i++) {
133 hd[i*5]. start_sect = 0;
134 hd[i*5]. nr_sects = 0;
135 }
/) EEECEEAMES EAE 1 BBEE G 1 AR ERD , SRR X RS R
// BRI R bread O S AL 58 1 BB (fs/buffer. ¢, 267), SEH) 0x300 5L) T %45
[/ (S WANRIGWIU) o SRR AL Sk 1 AN X A7 E Ox1fe AMIPRASF 5 275 47 55AA" KA Wt
// X AT 0x1BE FFUGR I X RIS AR a7 X R A5 BN 70 X E s &5 4 hd
136 for (drive=0 ; drive<NR HD ; drive++) {
137 if (! (bh = bread(0x300 + drivex5,0))) { // 0x300, 0x305 ZHH &% T .
138 printk(“Unable to read partition table of drive %d\n\r’,
139 drive) ;
140 panic (7);
141)
142 if (bh->b data[510] != 0x55 || (unsigned char)
143 bh—>b data[511] != 0xAA) { // PIWTEREAT B 2R & 55AA7 .
144 printk(“Bad partition table on drive %d\n\r’, drive);
145 panic (7);
146 }
147 p = 0xI1BE + (void *)bh—>b data; [/ Ay DX RAL TR A 1 X 1Y Ox1BE 4k
148 for (i=1;i<5;i++, p++) {
149 hd[i+b*drive]. start_sect = p—>start_sect;
150 hd[i+5*drivel.nr_sects = p—>nr_sects;
151 }
152 brelse (bh) ; /[RETRON A TS R FRR) N A7 S X
153 }
154 if (NR_HD) /) WA R AR H O NI X R, AT EN 2y X R IE WA B
155 printk ("Partition table%s ok. \nlr”, NR_HD>1)? "s”: 7) ;
156 rd load(); // nEk (A& RAMDISK (kernel/blk drv/ramdisk.c, 71) .
157 mount root(); /) IR SRS (Fs/super. ¢, 242) o
158 return (0);
159)
160

/117 WA SR IR B A w4

// AR IR A A A7 A vt T HD STATUS (0x1£7) , FFAEFRE I B 2 9% it 25 LU AR 87 RIS h B8 1AV
161 static int controller ready(void)
162 {
163 int retries=10000;

- 158 -

6.5 hd. c F&J¥

164

165 while (—retries && (inb p(HD STATUS)&0xc0) !=0x40) ;
166 return (retries); /) RBIERHE IR I EL

167 }

168

//// KM EHAT O 2 G RS . (win BRI 5 1 45 5)
// EHURE AR P R S PATEE HOR A IR0 RoRIER, 1 HE . WERIAT A4,
// VT AE R 25 A7 4% HD ERROR(Oxlfl)

169 static int win result (void)
170
171 int i=inb p(HD STATUS); // HUREHEE.
172
173 if ((i & (BUSY STAT | READY STAT | WRERR STAT | SEEK STAT | ERR STAT))
174 == (READY STAT | SEEK STAT))
175 return(0); /% ok */
176 if (i&1) i=inb(HD _ERROR); // # ERR STAT EA¥, WLHUEE R %17 4.
177 return (1);
178 }
179
//// AR S Rk A S (S WA ERUY]D .
// WHZH: drive — 5 (0-1) ; nsect — BB XEL
// sect — BIAHIX; head - Wik'T;
// eyl - FElfI; emd -~ frAAE;
// *intr_addr () — BE2 AP WA BERE 5 ol U H 1 C A R E
180 static void hd out (unsigned int drive,unsigned int nsect,unsigned int sect,
181 unsigned int head, unsigned int cyl, unsigned int cmd,
182 void (kintr addr) (void))
183 {
184 register int port asm(”dx”); // port ZZiE K W /78S dx.
185
186 if (drive>l || head>15) // W RIRE# T (0, 1) >1 Bk 5>15, WP A SR .
187 panic(“Trying to write bad sector”);
188 if (lcontroller ready()) // R BUN A S A AR s W S, ZERL
189 panic (“HD controller not ready”);
190 do hd = intr addr; // do_hd RREFREIEAEAE R T TR P B A
191 outb p(hd infoldrive].ctl, HD_CMD); /TR ZEAE 3 (0x316) 4 45 7710
192 port=HD DATA; // B dx O EdE A A i 1 (0x1£0)
193 outb p(hd infoldrivel.wpcom>>2, ++port) ; // ZH: EHAMEMI T (FFF 4) .
194 outb_p(nsect, ++port) ; /] ZH /BRI R
195 outb p(sect, ++port) ; /] BH: RIEFIX.
196 outb p(eyl, ++port) ; /) ZH KRR 8 A7,
197 outb p(cyl>>8, ++port) ; // S MRS 8 .
198 outb_p (0xA0| (drive<<4) |head, ++port) ; // B WS +ik S,
199 outb (cmd, ++port) ; /) s WA A2 .
200 }
201

/1] SRR e . WREIASE AT IR ST AR GO AL 5 (A il 4 58 45 bR A
// BAL, 'J_'JJEJZIJJ, &M 0. %ngt BUS TS A, Wz (e 1.
202 static int drive busy(void)

203 f{

204 unsigned int i;

205

206 for (i =0; i < 10000; i++) /) VEIREER R bR G AL EAT o

- 159 -

6.5 hd. c F&J¥

207 if (READY STAT == (inb_p(HD STATUS) & (BUSY STAT|READY STAT)))

208 break;

209 i = inb(HD STATUS) ; // FHCEEHIRPIRES T .

210 i &= BUSY STAT | READY STAT | SEEK STAT; // MuUlf-A7. mtesir S84 of .

211 if (i == READY STAT | SEEK STAT) /) A A B T E L AR, W [E] 0,
212 return (0) ;

213 printk ("#D controller times out\n\r”); // BNEREBEN, ErnER. 3R 1.
214 return(1) ;

215 }

216

/1] WAL CROBTRIED A2 % o

217 static void reset controller(void)

218 {

219 int i;

220

221 outb (4, HD_CMD) ; /TR BT A7 A i A IR I (-84 .
222 for(i = 0; i < 100; i++) nop(); [/ R BN TR (PR AR

223 outb(hd info[0].ctl & 0xOf ,HD CMD); // FHAIEIEH HI4EHIZ (25 L. F=iR) .
224 if (drive busy()) /) EERH R, W B s RS R
225 printk ("AD-controller still busy\n\r”);

226 if ((i = inb(HD_ERROR)) != 1) /) WERRA ARy, AT 1T BRI .
227 printk ("H#D-controller reset failed: %02x\n\r”, i) ;

228 }

229

I BARERE nro HAEEAL (EFRIE) MEElds . AR5 kMR g a4 <@k s4
// Horecal intr () A& EAH A 0 W A RS P o i PR ERHT AR IE AL B pR A
230 static void reset hd(int nr)

231 {

232 reset_controller();

233 hd out (nr, hd info[nr]. sect, hd info[nr]. sect, hd info[nr]. head-1,
234 hd infolnr]. cyl, WIN SPECIFY, &recal intr);

235 }

236

[/ EAMESRE W e
/) RAERAMERE A WIS, R A A T AL EEAE R R B BROA C AL R . AR TR B B B R A
// VAMHZEE . 20 (kernel/system call.s, 241 1T) .

237 void unexpected hd interrupt (void)

238 {

239 printk (“Unexpected HD interrupt\n|r’);
240 }

241

/) RS A A B 5
242 static void bad rw_intr (void)

243 {

244 if (++CURRENT->errors >= MAX ERRORS) // B SLis i X IR i) RS IR BOK T 8055 T 7 T
245 end request (0) ; // WG O SR i S A K ERE i HL

[/ XTI BEHThRS EAL CRAEHD

246 if (CURRENT->errors > MAX ERRORS/2) // Wiz AHEXECE KT 3 Ik,
247 reset = 1; [/ WV SRARAT 527 RE B P il 2 e A

248 }

249

/) R TR PR B AT A R P A

250 static void read intr(void)

- 160 -

6.5 hd. c F&J¥

251 {

252 if (win result()) { /) BRI S R AT

253 bad rw_intr(); // WUREAT B 5 A R e Ak 3

254 do_hd request () ; [/ SR IG R SRR AE AR N, (547) Ab 3 o

255 return;

256 }

257 port read (HD DATA, CURRENT->buffer, 256) ; // ¥ %dhs A 25 77 % 1 i B SR 45 M2 ph X o
258 CURRENT->errors = 0; // i AR

259 CURRENT->buffer += 512; /) WEEGL P IXFREL AR IR X

260 CURRENT->sector++; // IS,

261 if (-—CURRENT->nr sectors) { // SR R X HOE B e,

262 do_hd = &read intr; // PHOCEMEE] C RSN N read intr ()
263 return; // B R v T A BEAR AR do_hd B
264 } // WK ZRBERE B S . S system call. s
265 end request (1) ; /) A X s O s, WALBEE KA N,
266 do_hd request () ; /) AT IR SRR A

267 }

268

/) BRI R R, 7E LD A B R D
/) FES A NATIE, Ar- T WSS, STRE b T ACFI R, N 26 A8 o b A B P e D 1
// C BBk do hd () B4 write intr (), FMATESEMEER (R J5, BUTIZREL.

269 static void write intr (void)

270 {

271 if (win result()) { // U R R) g R [R R A R

272 bad rw_intr(); /) W S AT AR 1S RIS AL B

273 do_hd request(); // RGBT SRAE AR AR . (A7) b,

274 return; // SRJE IR (R T RE R D .

275 }

276 if (——CURRENT->nr_sectors) ({ [/ NGRS Xk 1, #70H XS,
277 CURRENT->sector++; [/ CHENE KRG X 5+,

278 CURRENT->buffer += 512; // VW REMH X HrE,

279 do hd = &write intr; // E R W R R R BB AN write intr O,
280 port write (HD DATA, CURRENT->buffer, 256) ; // P37 (748 115 256 F5.
281 return; // RIS AT IR 0 S AR 5) TP IR AL B
282 }

283 end request (1) ; /) AR DA 5, MARRIGE SKETR i,
284 do_hd request () ; /) BAT IR SRR

285 }

286

) REEERIE R AT B S. 7E RA r AS E R D
/) B R) SR R R U ST S S A B, AR s R AR AT (52 f3r) A0,

287 static void recal intr (void)

288 {

289 if (win result())

290 bad rw_intr();
291 do_hd request();

292 }

293

) TR SRR
294 void do_hd request (void)

295 {
296 int i,r;
297 unsigned int block, dev;

- 161 -

6.5 hd. c F&J¥

298 unsigned int sec, head, cyl;

299 unsigned int nsect;

300

301 INIT REQUEST; // KEIE SR IR At (3 W, kernel /blk_drv/blk. h, 127) .
/) WA T A (AR GRS B S) o 7 S B AL Ry X .

302 dev = MINOR (CURRENT->dev); // CURRENT s& ¥4 (blk dev[MAJOR NR]. current request).

303 block = CURRENT->sector; /) VR LR B X .

/) MR TR B SRR XK T XA R K B2, WEHGZIR, FHEEI RS repeat b
// GEXAE INIT_REQUEST JFARAL) o DD IRESREEE 2 AMRX (51242 541, PrRARSKRIK B X 5
[/ ANRER T3 DX o e (B — AN B X5

304 if (dev >= 5%NR_HD || block+2 > hd[dev].nr sects) f{

305 end request (0) ;

306 goto repeat; // ZhRRELE blk. h B)10 .

307 }

308 block += hd[dev]. start sect; // ¥§Praz iz IHnT N 2 FEAEEL E 400 B X 5o
309 dev /= 5; // WO dev ARERMILS (08 1) .

/7T BRI G AR R MISE 8 £ S 5 A P R Ak s o X5 RISl T Bt DX K S AR T T (1
/) B (sec) v PrEALE S (cyl) ik T (head) »

310 asm__ (“divl %47 "=a” (block), =d” (sec):”” (block), 771”7 (0),
311 “r” (hd_infoldev]. sect)) ;

312 _asm_ ("divl %47 "=a” (cyl), "=d” (head): ”” (block), "1~ (0),
313 “r” (hd_info[dev]. head)) ;

314 sectt;

315 nsect = CURRENT->nr sectors; // #Ki/SHIRXE.

// W reset B 1, WHATEALBRA . EABE ARG, JFES EEFRIERL, &E,

316 if (reset) {
317 reset = 0;
318 recalibrate = 1;
319 reset_hd (CURRENT DEV) ;
320 return;
321 }
[/ WREHIEARE (recalibrate) BAL, W RAIZIRE, SRS B2) 45 SOX BT AL IE A 2.
322 if (recalibrate) {
323 recalibrate = 0;
324 hd out (dev, hd info[CURRENT DEV]. sect, 0, 0, 0,
325 WIN RESTORE, &recal intr);
326 return;
327 }

// AR AT SRS S R X A, MR LS A, TR CIRAS T A 285 BT AIWTE KRS Ar &
// DRQ_STAT &5 ¥ {7 . DRQ STAT ZMHFRAZTFAF 45 MKk L (include/linux/hdreg. h, 27) .
328 if (CURRENT->cmd == WRITE) {

329 hd out (dev, nsect, sec, head, cyl, WIN WRITE, &write intr);
330 for (i=0 ; i<3000 && ! (r=inb p(HD STATUS)&DRQ STAT) ; i++)
331 /* nothing */ ;

/) IRE SRR S5 AL B AL R AR o 5 e BRIA SR MR B, WS BB R AT R, o4k
/)R AR 70 g B A 5% e A7 s) HD_DATA 5N 1T AN R X K 8l o

332 if (Ir) |

333 bad rw_intr();

334 goto repeat; // 1xbr'57E blk. h H&Ja1H, WEIEEE] 301 17,
335 }

336 port write (HD DATA, CURRENT->buffer, 256) ;

/7 IR AR RS R A DX, U g S A T b A B X i
} else if (CURRENT->cmd == READ) {

w
w
3

- 162 -

6.5 hd. c F&J¥

338 hd out (dev, nsect, sec, head, cyl, WIN READ, &read intr);
339 } else

340 panic (“unknown hd-command”) ;

341 }

342

/) ARG
343 void hd init(void)

344 {

345 blk dev[MAJOR NR].request fn = DEVICE REQUEST: // do hd request().

346 set_intr gate (0x2E, &hd interrupt); // WEMBEFEI M= int 0x2E(46) .
// hd interrupt fF (kernel/system call.s, 221) .

347 outb p(inb p(0x21)&0xfb, 0x21) ; // SATHERI T 8259A int2 MIBEMAT, FoVFMT
// R SRS .

348 outb (inb_p (0xA1)&0xbf, 0xAl) ; [/ AR P WS SR B, (FEMR B, i
// RREEAE A Ak T SR AT T

349 }

350

6.5.3 EEER
6.5.3.1 AT BB EOFFE
AT R B4 38 (1 2 RE 25 A7 a1 L R R BT o

6. 1 AT FERI=HI 3R & fFarin 0 RAEH

10 i I SLERAE HEAE
0x1f0 B A7 2% — WXEHE G 5. i)

0x1f1 AR GRURIRAD A TAME P Ao
0x1f2 X ETAER - BXE B 5. .)

Ox1f3 F5 X5 2 Ao - BRI GE. 5. R

Ox1f4 KI5 ZF A7 A% — H ST G, 5. B, w1
0x1f5 FEIR S 2 A7 o8 - S ETE GE. 5. B, &1k
0x1f6 UK S 28I S 2 A8 - REN B S/REL S (101dhhhh, d=BKEh88 5, h=fik5)
Ox1f7 FIRE T A ALy

0x3f6 A 0l 27 A7 v

0x3f7 BN GAER (5 1.2M B85

I TR 3) FF A AR R T VR U
1. ¥ %A% (HD_DATA, 0x1f0)

X%t 16 A7k PIO B faas, M T IX e, SREHERK L EE. CPU B iZ Bl &5 4745)
it 5 N BRI Y 1 AN B DX s, BP 24 H iy 2> 'rep outsw'E rep insw'EL 57 152/5 ¢x=256 -,
2. HNRFAAAE (B ISRrMEZ A4 (5) (HD_ERROR, 0x1f1)

TEERT, ZFFAEARAAICA 8 ALMES ERAS . (R U RS FF /228 (HD_STATUS, Ox1f7)[1) {7 0=1 I}
A T EEE A A 3 AT RIZE W & 1S S e ar A AR . s s

6.2 BRITHRBIRE T

{H 2 Wi A e A n
0x01 TR Biibrb ER
0x02 Pl o T4iE O
0x03 5 DX R DX A
0x04 ECC i E4 2T

- 163 -

6.5 hd. c F&J¥

0x05 P A EE S

0x10 ID A4k F
0x40 ECC #i%
0x80 WX

TEGHAENS, %A ae AIE D BT PAME A A . Eid S HMER IGFE T 5 o 0 5 R AR S5

RATEZ 0X05 LI A7, bR 4 Rkt

3. JHIXEZHFAE4s (HD_NSECTOR, 0x1f2)

AAFRATIAE . 5 R AR S SRE B DX T2 KRR, RESERR 1 b X3R4

wAAt A L, HEN 0o EHHMEA 0, IR A&Hiin KR X 4 256,

4, WX 54 (HD_SECTOR, 0x1f3)

SO 5 RRHREGf e MBS 752 BRI, RIERSRBHEX S, ke

J 1 e DR AL A S0 1

5. FIH5 %A% (HD_LCYL, HD_HCYL, Ox1f4, 0x1f5)

AL IS 254745 20 A I RE TR R 8 A2 AR 2 .

6. BB LA Ar 4% (HD_CURRENT, 0x1f6)

AR B K EAR a1 € UK Ehas Ak S . JLAzk 30 101dhhhh. 3

th 101 R/~ K H] ECC BLIGASAIAEE bR [X A 512 777 d RonEFERI K8 (0 5L 1); hhhh RIRIERRIRESL

7. FREHAE G [frdas (5) (HD_STATUS/HD_COMMAND, 0x1f7)

TEBERS, XN —AN 8 AL AR FF A7 As o AR A5 B E AT fr 200 5 M ERTEIRAS o &7 10 SR
ERR_STAT 0x01 /I mAPUTHENR.

INDEX_STAT 0x02 /I WEIEG].

ECC_STAT 0x04 /I ECC KZH
DRQ_STAT 0x08 /I iERARSS -
SEEK_STAT 0x10 /I FIELEH.
WRERR_STAT 0x20 /I Rzhas i,
READY_STAT 0x40 /I IRBNAHESLE G,
BUSY_STAT 0x80 /I ¥ Ik

I, %3 O N A A A Ay, 52 CPU A ORI 0l dr&, AT 8 &, WL FRITR.

6.3 AT FEEITHIZHSTIE

i e i HhAT &b

e g % 417 | D3D2D1D0 HIEK
Wzhas EPTROE(EA) | Ox1 R R R R |l
B X 0x2 0 0 L T [y
5 IX 0x3 0 0 L T |
S DX AL 0x4 0 0 0 T | iy
T AR 0x5 0 0 0 O |rhi
P g H1 464 0x6 0 0 0 0 |+
E 0x7 R R R R |

FEHIE 2 W7 0x9 0 0 0 0 | #iigssn

ST RS 22 0x9 0 0 0 1 | FhIsesm

R FATE 4 A ns 8, Ha O
R &L HEHCR . R=0, WPHEHR A 35us; R=1J 0.5ms, DL EHN,
L A% . L=0 £RiE/5RIX 4 512 745, L=1 £S5 RIX N 512 1 4 F75 1) ECC 15,

- 164 -

6.5 hd. c F&J¥

T EA . T=0 &Zon RVFEW; T=1 &R .

8. MEZELEHIZ AR (5) (HD_CMD, 0x3f6)

AR R G AU) - O R R AR . T XS NI A I A S HCR L

0x08 Ab 115 15 B
6.5.3.2 AT IE R ITH| 841z

FERAERE IR E AT BRAE AR I, 5 EE RN AR S H N Ao Hodr 4% N R R Ps. Hobkik 6 7

WHISH feJa KW 1T e 20 ANEAT A 38R BB R IX 7 A a2 H AR E AN 1 0x2f1
-- Ox1f7.

6.4 LA
Ox1f1 MR A AT I
0x1f2 i DX B
0x1f3 e e XS
Ox1f4 MRS AR
O0x1f5 AL
0x1f6 WEhas 5k S
Ox1f7 fir 2 b

56 CPU [%3 17 & i -1 (HD_CMD)0x3f6 it #2507, e r AN AR) o 7 SN e

Ry 4% LR RIES B i %o PR

1.

2.

3.
4.

5.

Rl as 2 WIRAS: CPU T B FRAS WA as, AL 7 0 0, FRonfEhildsasitl e 7RI E I Ia) N 428
s EAL TR, WA i
Rl YR sh dsmtet: CPU FIMT IR H AL 6 0 1 RE SIS tst. o 1WA Z 5o i

é,\

%ﬁmvﬂ R4 HH 73 30 T I g 11 i H S ORI iy &

CPU %% *ﬁﬁi AT, ARG AR NG RAS 5 (IRQL4 - XTI intd6) Bl 4%
%%&*ﬁ s FEHIHRAE L R RN SR e X AR (22 B XD
h@ﬁﬁ,%.@uﬁ&@f%ﬁ%ﬁ%,%&o%?oM%vamﬁﬁw,EW%W ESEN
AP AR R AT A7 25 (HD_ERROR) U i1 .

6.5.3.3 BEEASH R

iR, int Ox41 [b [A B (4 * 0x41 =0x0000:0X0104) A7 FHEAS A B R e (1 Hchil iy

B M LA SRR . T 100%3 25 1K) BIOS K, IX B 77505 il 45 2 K ME 4 16 7 ik
FOOOh:E401h. 2 —/AMEHEIMIEARSER N b7 T int 0x46 i) &=

*6.5 WEEASHESR

ik | Kb Ll
0x00 2 FE T £
0x02 FAT | Bk EL
0x03 7 FEUGT/N 5 BRI AE (1 PC XT A, Heh 0)
0x05 ¥ THES AT AMERE S (O 4)
0x07 T | K ECC FERKE (U XT AiH, Heh o)
0x08 T | T (IR kR
£7.0 ENG
fir 1 TRE(0) (551 IRQ)
fir 2 VAL
i3 FHESBOT 8 ' 1
7 4 A HI(0)

£ 5 AL IR+ AT AR R A XA, T 1

- 165 -

6.5 hd. c FL)¥

7. 6 A% ECC ik

77 28T) H
0x09 | BN ((XT A, HEh 0)
0x0A T | ARG XT A, b o)
0x0B FAT | KRB AR (IXT i, Heoh 0)
0x0C 7 Hl S A ki (452 1) A TR
0XxO0E TN | BRRETE bR X B
OxOF T RE.

6.5.3.4BEEEEWMEFR

T R 542 3. Hep e i Bl 50l o -
1- N A7 2- Tk 45k, 3-fili 48k 4-ttyx, 5-tty,6-J£4T 11, 7- Ak 4 i

M 1 NEEEE P T LAAEAE 1--4 A0 DX, DR R A A0 AR 0 DX PR AN R I e 26 5 BEA T 58 70 (X o DA B

R A BT thBL 7 3R

WA T= 1B 57256 + KBS

B[dev_no = (major<<8) + minor
PRANERE) T AT 1B 3 a5 W N R
6.6 BEPERES

WSS | XN & i 1

0x300 /dev/hd0 REEFIEAG 1 Ml

0x301 /dev/hdl FoRE LAMEREE 1AM X
0x302 /dev/hd2 TR LAMERIEE 2 M X
0x303 /dev/hd3 FRoREE 1L MERLES 3 AN X
0x304 /dev/hd4 FRoREE 1L MEEE 4 AN IX
0x305 /dev/hd5 RFIEAET 2 Ml

0x306 /dev/hd6 FORE 2 AMEREE 1 A X
0x307 /dev/hd7 FORE 2 ANMERLINEE 2 M X
0x308 /dev/hd8 FORE 2 AR 3 AN X
0x309 /dev/hd9 RN 2 NMEELIE 4 AN IX

H:rh 0x300 AT 0x305 HAN S WA 7 XX R, iy A AR R A
M linux PIAZ 0.95 FiJic CLEEAME FH IR B 1) iy 42 055X, i A2 A S e AR IR B i 4 78k T o

6.5.3.5 MEHSRXFE

N T BB R G EAER DU, A T DIAEZAR B0 1--4 Doy X B2 DX TR R e X5
W SR 4 DRI, RADRINA 16 FAAUNR, XN AT IIE R, A8 73 X R/
A L FRE T 5 AT 5 AU X, W R B o 23 DORAFIRERE L 1) 0 AT 1T 0 k%5 1 4MR3IX) 0X1BE--0x1FD

4k,
6.7 WESXEKEN
P E ki K/ B

0x00 boot_ind T | 51 bR K. 4 DX ER RS — N X251 31,
OX00- AN M%7 X 5| S 1E R 4t ; 0x80- M i% 23 X 51 FHRAE &
2T

0x01 head T | A REBHEL S .

0x02 sector FAT | A GERLE X S (B 0-5) ML A TH 5 5 2 (7 6-7).

0x03 cyl T | A KGEAAFE RS 8 .

0x04 sys_ind FAY | XA EAY . 0x0b-DOS; 0x80-0Old Minix; 0x83-Linux ...

0x05 end_head T | XGRS

- 166 -

6.6 11 _rw blk.c F&/F

0x06 end_sector | P | A X 5 (17 0-B) RIS AT =1 2 AL(f 6-7).
0x07 end_cyl T | GORAEIS A 8 fi.

0x08--0x0b start_sect KT | XREEYFREX S,

0x0c--0x0f nr_sects K7 | XA s X

6.6 1l_rw_blk.c 2R

6.6.1 IhgedE IR

SRR B TR IRR I R A B S . 5 BRIVEREP I R S s 11 _rw_block().
P iz e B2 5 R I A s SR SRR e . R b i B2 TR T 1R %K do_hd_request(), LAHATAEAE
Bl B/ S A, 1M1 do_hd_request()t @& 4 7 ab B A AR C el DRIL, R B A 50 BB A
KRR KT (int Ox2e) N, SCosAE TP Ik AL P FEC T do_hd_request(), A5 7EAE A #R A J011) SAT 9T AR oK
T, W do_hd_request < PRI T I B2/ S48, TR AL, 2P A0 B S SRR A S

LK 6.1 s

1l_rw_block() '

make_request()

add_request() '
do_hd_request() |
: 70 b A B P h ks S 4k ST
E do_hdrequest () %, —H 2R
REAE 7 5 i ; BASS b IR 7 R 5

6.6.2 XD E R

E6.1 11 rw block VAR FEF

BF% 6.5 linux/kernel/blk drv/11 rw blk.c }&F

/¥
¥*
*/

/¥

[<© [CO |2 |O> |01 [[Lo Do [—

*/
/%

* Iinux/kernel/blk dev/11 rw.c

* (C) 1991 Linus Torvalds

* This handles all read/write requests to block devices

* R AR BRI A P AT B/ S R A

*/

O #include <errno. h>
11 #include <linux/sched.h> // WERFLCMH, & X TESEH task struct. FJIEFS 0 %,

/) BRSO A RGPS AT . (Linus A minix FPEIHER)

[/ AT — B S IR AT 2 BB B AR i N 2T G o B TR)

12 #include <linux/kernel.h> // WHkCAF. &47 SN #%% BB B & L.

- 167 -

6.6 11 _rw blk.c F&/F

—
w

DO |— = = = = =
Blelz 5z =]

#include <asm/system. h> // RGEKIAMFo 58 T BEE BB SEIRART/ o T 155 R A SIS0 2

#include “blk.h” /) BRI o R SCUESRER A H L Bsd o Hodl 4 My M pR B AS R

J*

* The request—struct contains all necessary data

* to load a nr of sectors into memory

*/
/%

* TH RGPS A N nr Je XCECH 20 A7 I BT A D 2EE
*/
struct request request[NR REQUEST]:

/¥
* used to wait on when there are no free requests
*/

/% S FH T SR A AT 25 PRI PR I S5 Fp A %/

struct task struct * wait for request = NULL;

/% blk dev struct is:

* do_request-address
* next-request
*/
/% blk dev struct Hrik#4ityJE: (kernel/blk drv/blk. h, 23)
* do request—address /R T G SR AL BERE P FR
* current-request [/ HEAAIE AN K
*/

/) ZEEATH E RS S E N RG] CRER
struct blk dev struct blk dev[NR BLK DEV] = {

{ NULL, NULL }, /* no dev ¥/ // 0 - L.

{ NULL, NULL }, /* dev mem */ // 1 - Wi,

{ NULL, NULL }, /¥ dev fd ¥/ /) 2 — BB

{ NULL, NULL }, /¥ dev hd ¥/ /) 3 — WEHBK

{ NULL, NULL }, /¥ dev ttyx */ // 4 - ttyx W

{ NULL, NULL }, /% dev tty ¥/ // 5 - tty W

{ NULL, NULL } /¥ dev Ip %/ // 6 — lp FTEIMLBE %o

}s

// BUERRERIZETIX bhe WIERTEE et X g e 5 80e, WAL B SRS CRarh Binssfs)

// HEERIBEHAT IR 5% v X AT 45 B Aff M e B
static inline void lock buffer(struct buffer head * bh)

{

cliQ; // TEH A .

while (bh—->b_lock) // MR ZE T IX A, TR, B 2 2% i X R
sleep _on(&bh—>b wait) ;

bh->b_lock=1; // SERVBE LR MTIX .

stiQ; // T

}

[/ B U BiE G IX .
static inline void unlock buffer (struct buffer head * bh)
{
if (!bh->b lock) /) WK X B B, UFTED A B

- 168 -

6.6 11 _rw blk.c F&/F

54 printk(“7/ rw block. c: buffer not locked\n\r”);
55 bh—>b lock = 0; /] TEBERRE

56 wake up (&bh->b wait) ; // TR L R X AT 4
57 }

58

59 /%

60 * add-request adds a request to the linked list.
61 * It disables interrupts so that it can muck with the
62 * request—-lists in peace.
63 */
/%
* add-request () [JIER P I TG K. & KT,
* IXFEL AR A HUAL I SRIER T */
*/
///) TEERFINAGE R . 280 dev FRIEHE K, req ETERIMLE MG Mo

64 static void add request (struct blk dev_struct * dev, struct request * req)
65

66 struct request * tmp;

67

68 req—>next = NULL;

69 cli(; /] R

70 if (req—>bh)

71 req->bh—>b_dirt = 0; /] TG CHE” KR

// TR dev B4 HTIE K (current_request) FBUAS, NIFRIRHANZ B AR EERI, A2 H 14
/) VESRIN, PR AR B A S i SR PR B ELEERR S SR I, I ST RN PAT AN 152 4% (A7 3K R R

72 if (! (tmp = dev—>current request)) {

73 dev—>current request = req;

7 sti(); // T,

75 (dev—>request fn) O; // PATE & EKREEL, XTHEAL (3) /& do hd request() o
76 return;

77 }

[/ IR HRNZ B QAT R IE SRS, W A T B AR R IR A &, ARJE K 2 Aiis SR ad A
/)RR

78 for (; tmp—>next ; tmp=tmp—>next)

79 if ((IN ORDER (tmp, req) ||

80 ! TN ORDER (tmp, tmp—>next)) &&
81 IN ORDER (regq, tmp—>next))

82 break;

83 req—>next=tmp—>next;

84 tmp—>next=req;

85 stiQ;

86)

87

/) RIS RBUHE AT R I, SRR A major, @14 rw, FEMCEUE KB S84 bh.
88 static void make request(int major, int rw, struct buffer head * bh)
89 {

90 struct request * req;
91 int rw_ahead;
92

93 /% WRITEA/READA is special case — it is not really needed, so if the */
94 /* buffer is locked, we just forget about it, else it’s a normal read */
/% WRITEA/READA JERFERIIEOL — BAIFFARDER, PrU g X o& L8, */

- 169 -

6.6 11 _rw blk.c F&/F

[BAVRAE ETIRH, AT AT — BB/ Gk, */

// XM READ’ HV WRITE' JS IR A P AR i) Ahead, R $ AT /5 Bl P i
/) HFRERGM X ERATH, S BB, ST/ s K.
95 if (rw_ahead = (rw == READA || rw == WRITEA)) {
96 if (bh->b lock)
97 return;
98 if (rw == READA)
99 rw = READ;
100 else
101 rw = WRITE;
102 }
// W R AT AN 2 READ 58 WRITE &R WAZ R P A, o s O F2ENL.
103 if (rw!=READ && rw!=WRITE)
104 panic (“Bad block dev command, must be R/W/RA/WA”);

)/ BRI, WURGNIX O% 8L WPARITS GIERD AR, R R

105 lock buffer (bh) ;
// IR A S S I B ph X EAR ANE, B a2 2 e B gg b X 2 SR 1y, A IR I
[/ IEANER . BRI X AR
106 if ((rw == WRITE && !'bh->b dirt) || (rw == READ & bh->b uptodate)) {
107 unlock buffer (bh) ;
108 return;
109 }
110 repeat:
111 /* we don’t allow the write—requests to fill up the queue completely:
112 * we want some room for reads: they take precedence. The last third
113 * of the requests are only for reads.
114 #/
/% BAIARELLBAS rh AR A2 i R I AT TR E A A RO B — L[] . S EpAE
* ERSEI . WERBAIII G =2 — 2 (Al e 24 1
*/
// WG RIUE MG KRB R R IT UG R DA R . W FR sk, X T ikmr &k, LA #
[/ MBAFR I iR A, TS 38 KU e MBI 2/3 Ab i) Sk B2 TN
115 if (rw == READ)
116 req = request+NR_REQUEST; /) X TEAER, R BA SRS A A R
117 else
118 req = request+((NR_REQUEST*2) /3); // KT Hi&K, FAFIaE+5 R BAF] 2/3 Ab.
119 /% find an empty request */
/% AR AR */
/) WJE AT ZR, RS54 request 1 dev FBUE=1 I, FIRIAITAME T H
120 while (-——req >= request)
121 if (req—>dev<0)
122 break;

123 /* if none found, sleep on new requests: check for rw ahead */
/% WEREAT BRI, LR IO G KRN : fRR T 2 P/ 5 =/
/) WREA —DUE R (I request A IREN @ RBOE LD, WIEF S XiE K& 2
// $ERTEL/S (READA 8% WRITEA) , W& MIBGF K o A5 MAEA O SR IEAG (ARG K BAF
/) BT, SRR R,

124 if (req < request) f{ // I RAE KBNS R ST,

125 if (rw _ahead) { [/ WFRIRET R/ HAE R, WP, 1B
126 unlock buffer (bh) ;

127 return;

128 }

129 sleep on(&wait for request); // FWREARUIERIEAS, &2 AEIERKBAA,

- 170 -

6.7 ramdisk. ¢ &7

130 goto repeat;
131 }
132 /* fill up the request—info, and add it to the queue */

/% R SR I ISR B, FRR LI A S %/
/) ER&EMZ N (kernel/blk drv/blk. h, 23) .

133 req—>dev = bh->b_dev; /] BT

134 req—>cmd = rw; // fix% (READ/WRITE) »

135 req—>errors=0; [/ BRI AR A R R

136 req—>sector = bh—>b blocknr<<1; // &EHX. (1 =2 HX)

137 req—>nr sectors = 2; /] BEE R X

138 req—>buffer = bh->b_data; /] BRGEIX .

139 req—>waiting = NULL; /) ARS AR EPAT S8 L H T
140 req—>bh = bh; /] G X R AR ET

141 req—>next = NULL; VAR (1 7 & ST 18

142 add request (major+blk dev,req); // BiERIIMABAFIH (blk dev[major], req) »
143 }

144

/1] ARIZ S AR PR HL
/) R ELRAE fs/buffer. ¢ THEHA . SEPRIIE S HAE & i % 1 request_fn () BREE .
// TR AR, %S do hd request() . (kernel/blk drv/hd.c, 294)

145 void 11 rw block(int rw, struct buffer head * bh)

146 {
147 unsigned int major; /) ERRT O TR 3) .
148
[/ R BT A B %R & S S A E RO AE, WE R AR, FRREL
149 if ((major=MAJOR(bh->b dev)) >= NR BLK DEV ||
150 ! (blk dev[major].request fn)) {
151 printk(“7rying to read nonexistent block-device\n\r”);
152 return;
153 }
154 make request (major, rw,bh); // GUEEERIUEHEANTE KA1
155 }
15

/1)) R ERIEA RS, IR main. ¢ A (init/main. c, 128) .
/] RIBEATE KRB, F AT 15 SKIUE R R I (dev = —1) o 47 32 30 (NR_REQUEST = 32) .
157 void blk dev_init (void)

158 |
159 int i;

160

161 for (i=0 ; i<NR_REQUEST ; i++)
162 request[i].dev = -1;
163 request[i]. next = NULL;
164 }

165)

166

6.7 ramdisk.c F2fF

6.7.1 ThEEHEIA

- 171 -

6.7 ramdisk. ¢ &7

6.7.2 XD ERE

Bl|Z% 6.6 linux/kernel/blk drv/ramdisk.c #&F

O I oo DD [—

| —
O O |00 |3 o

—_
—_

DO | = === ===
IBlelx 5z m= SR

[N
—_

|N
Do

B IRIS[5[2 e

29
30

w
—

€3 188 |
wW DN

/¥

* Jinux/kernel/blk drv/ramdisk. c

*

* Written by Theodore Ts’o, 12/2/91

*/
/* [Theodore Ts’ o %], 12/2/91

*/
// Theodore Ts’ o (Ted Ts’ o) /& linux #:XHZE A AW . Linux ZEH TGN RAT HE MR KM
/) W55, BAE Linux #AE RGN R R, At ME RIS R Linux IR EPEAE T maillist, Jf
// FEACEM X 5 B T Tinux [ftp 35 A (tsx—11.mit. eduw) , T HZEARHAT K Tinux H M
/) BEHEIRSS o AT Tinux 7B H I BCR DTk 2 — 23 RS T ext2 U RS, %I RA T KRN
// linux AP RSO RGhrUE. it YHER T extd RS, KRES T XHREH
[/ FREMERT B R . ME M HESE, 28 97] (2002 4E 5 A) Y linuxjournal $ATRHAdAE Ky
/) THEMAY, AT 7 Rv5. HAT, Ahoh IBM Linux HoRHGTAE, HFMFHEAH KL LSB
// (Linux Standard Base) 55N T/E. (i F=T1: http://thunk. org/tytso/)

#include <string.h> /) TR T T Y SR B ERE RN BB
#include <linux/config.h> // WIZHCE kM. w2 SCBERLTE S AMER A (HD_TYPE) Wl 3ETN.,

#include <linux/sched.h> // WEEREFLCME, & X TAESSH task_struct. FIUHAES O 1%,
[/ Y IR TS S FERE At N ST g pR B S TR A .

#include <linux/fs.h> /] XAERG L. B XSRS R (file, buffer head, m inode 2§8) .
#include <linux/kernel.h> // Wkt &H —Le %5 H R E0M EIE € Lo

#tinclude <asm/system.h> // RG:LIHF. & X T CE BAE SR TE/ BT TS5 N S0 9 %
#include <asm/segment.h> // BARAFELICME. 2@ X T RECF A BAE Bt N 200 S 2R 0
#include <asm/memory.h> // WAFEE UL &8 memepy O A I G 2 B2

#tdefine MAJOR NR 1 /] WA E®SA T L.

#include “blk.h”

char *rd start; [/ BB NAFP AL AL E . 7E 52 1T WA %L rd_init O

/) WaE. 20 (init/main. c, 124) (455 rd fXF ramdisk) .
int rd length = 0; /) BB AR RN (R

// PATREREE (randi sk) i E#4E. FFPEHYS do hd request () 284l (kernel/blk drv/hd. c, 294) .

void do_rd request(void)
{
int len;
char *addr;
INIT REQUEST; // Ry sk i arvE e (B0 kernel/blk drv/blk. h, 127) .

// FHEAJ I ramdisk [P AR B DX IS 6 A A7 62 06 07 R A A7 o
// H sector << 9 IR sector * 512, CURRENT 5%€ X4 (blk dev[MAJOR NR]. current request).
addr = rd start + (CURRENT->sector << 9);
len = CURRENT->nr sectors << 9;
[/ WRF G TAN 1 BE N NGO E > IR R, WEWRiZiER, B2 repeat Ab
// CEXAE 28 47H) INIT REQUEST WITUAAL)
if ((MINOR(CURRENT->dev) != 1) || (addr+len > rd start+rd length)) {
end request (0) ;
goto repeat;

- 172 -

6.7 ramdisk. ¢ &7

34 }
// ARG dr 4 (WRITE) , WK SR Ih Z2 oh X 1) A 2SS 3 addr A&, KEEA len 75,
35 if (CURRENT-> cmd == WRITE) {
36 (void) memcpy (addr,
37 CURRENT->buffer,
38 len) ;
// R4 (READ) , JUPKE addr JFAR) A S HI B SR I 2ot X of, QRSN Len 5277,
39 } else if (CURRENT->cmd == READ) {
40 (void) memcpy (CURRENT->buffer,
41 addr,
42 len) ;
/) MBI AR, FEdL.
43 } else
44 panic (“unknown ramdisk-command”) ;
[/ VRIS G AR EE, EHHARE . HARSEA B AR B A 1N — i R I
45 end request (1) ;
46 goto repeat;
47)
18
49 /¥
50 # Returns amount of memory which needs to be reserved.
51 #/

/% R[ENAFREFUEL ramdisk FTiR I NFE */
[/ B BVIA RS B BB NAE TR i da ik, KB FERTEEAN BRI IX 3G & o
52 long rd init(long mem start, int length)

53 |

54 int i

b5 char *cp;

56

57 blk dev[MAJOR NR].request fn = DEVICE REQUEST; // do rd request().
58 rd start = (char *) mem start;
59 rd length = length;

60 cp = rd start;

61 for (i=0; i < length; i++)

62 kcptt = 7(07;

63 return(length) ;

64)

65

66 /*

67 * If the root device is the ram disk, try to load it.
68 * In order to do this, the root device is originally set to the
69 * floppy, and we later change it to be ram disk.
0 #/
/%
* WIRAR ARG W % (root device) j& ramdisk [F1F, M2 E . root device JFE &)
* R, FRATEE MU dR 7] ramdiske
*/
/1] B SCAE R G B ramdi sk

71 void rd load(void)

72 {

73 struct buffer head *bh;

74 struct super block S;

75 int block = 256; /* Start at block 256 +/

- 173 -

6.7 ramdisk. ¢ &7

76 int i=1;

77 int nblocks;

78 char *cp; /% Move pointer */

79

80 if (!rd length) // IR ramdisk BN E, WHERH .

81 return;

82 printk ("Ram disk: %d bytes, starting at Ox%x\n”, rd length,

83 (int) rd start); // %W7s ramdisk IR/NEL A N AEBR AR AL -
84 if (MAJOR(ROOT DEV) !=2) // Wi RSO &A AL, R .
85 return;

// BERELEE 256+1, 256, 25642, breada () I TiHUE & R, IEtr I FHFE LA, RFIRM]
/) EEBARP X FEE . SR A NULL, W& B AT 3 (fs/buffer. ¢, 322) .
// X H block+1 fE4RHEEL EEBEY .

86 bh = breada (ROOT DEV, block+1, block, block+2, —1) :
87 if (Ibh) {
88 printk ("Disk error while looking for ramdisk!\n”);
89 return;
90 }

/) ¥ s Fe RGP X P AR ik . (d_super block WiELH B LK) .
91 *((struct d_super block *) &s) = *((struct d_super block *) bh->b_data) ;
92 brelse (bh) ; /7122 AT 2B A SR AT 2R TEE ?]
93 if (s.s_magic != SUPER MAGIC) // WSLEBZIA BEHAXS, WHBIAKE minix SRS
94 /* No ram disk image present, assume normal floppy boot */

/% WA EAT ramdisk BUESCHE, B HPUTIEE R ET R */

95 return;

[/ B = RRYA(IXBED * 27 (BEXBUREIIIXKTT) -
[/ WRBAR AT WA B T RE AN I EEL, MIABEIE, B B BOFIR . A5 EoR
/] AR

96 nblocks = s.s nzones << s.s log zone size;

97 if (nblocks > (rd length >> BLOCK SIZE BITS)) {

98 printk ("Ram disk image too big! (%d blocks, %d avail) \n’,

99 nblocks, rd length >> BLOCK SIZE BITS);

100 return;

101 }

102 printk("Loading %d bytes into ram disk... 0000k’

103 nblocks << BLOCK SIZE BITS);

// cp FRIMEIAS LG AL, ARG KR b AR SO R % SR B R AL

104 cp = rd start;

105 while (nblocks) {

106 if (nblocks > 2) // WERTEHHEZ T 3 PR IUR A B sz 7 R i e .
107 bh = breada (ROOT DEV, block, block+l, block+2, -1);
108 else // 75 T A s
109 bh = bread (ROOT DEV, block) ;
110 if (!bh) {
111 printk(“Z/0 error on block %d, aborting load\n”,
112 block) ;
113 return;
114)
115 (void) memecpy(cp, bh—>b data, BLOCK SIZE); // W&y X b s 513 cp 4.
116 brelse (bh) ; /] REIRGEMIX
117 printk (71010101010101010\010%4dk”, i) ; // FTETMASTHEfE
118 cp += BLOCK SIZE; /] USSR E TS
119 block++;

- 174 -

6.8 floppy. c &%

—_
Do
o

[
)
—_

[
[\
)

—
DO
w

—_
[\
i~

—
Do
(@]

[
Do
»

nblocks—;
it++;
}
printk (710101010\10101010\010done \n”);
ROOT DEV=0x0101; // 1B ROOT DEV {8 H 48 7] lEfU 4 ramdisk.

6.8 floppy.c 12FF
6.8.1 IhREtEIAR

6.8.2 KA

BZ 6.7 linux/kernel/blk drv/floppy.c I2F

—_ | — =
|l\‘> |>—~|O |O |00 |0 | |1 [Lo DO [—

—
w

DO | = [— = |~ |—
[S=g=y =y

/*
* linux/kernel/floppy. c
*
* (C) 1991 Linus Torvalds
*/

JS*
* 02. 12. 91 — Changed to static variables to indicate need for reset
* and recalibrate. This makes some things easier (output byte reset
* checking etc), and means less interrupt jumping in case of errors,
* so the code is hopefully easier to understand.
*/

/%

* 02.12.91 - UGS E, DOEN AN EHA IESRAE . IXAI AL gy
* MUERBNTTE Coutput_byte RALKREZE) , JFH AL DI b BT b %
* H/bd8 LA SRS AE S D) B PR

*/
¥

* This file is certainly a mess. I’ve tried my best to get it working,

* put I don’t like programming floppies, and I have only one anyway.

* Urgel. I should check for more errors, and do more graceful error

* recovery. Seems there are problems with several drives. I’ve tried to
* correct them. No promises.

*/

/%

XA AR YR AR L. ROA/RSIRPTREATILRENE TAE, AT A TR IR,
w9 HERW WA — NI 554h, FRIVAZMCE 2 AR T4E, DLASOE 2 FE .
* O T I LC ALK AN B IF SOIBAFAE— 28 il . IR OA S AHEHATAIE T, BARARIIE
* [n) i 2 R

*/
J*

* As with hd. ¢, all routines within this file can (and will) be called
* by Interrupts, so extreme caution is needed. A hardware interrupt

* handler may not sleep, or a kernel panic will happen. Thus I cannot

- 175 -

6.8 floppy. c &%

26
27
28
29
30
31

60
61
62
63
64

* call “floppy-on” directly, but have to set a special timer interrupt
* ete.

*

* Also, I’'m not certain this works on more than 1 floppy. Bugs may

* abund.

*/

/%

* 1[A] hd. ¢ SCHF—FE, XSO T AR AR RE S A TR, T LR R
* M/ o B IR AL B T AN R IR IR, 75 U A R (BEHL) © . BRIEANRE
* HAEPAH” floppy—on”, Ty BEVE B —ANF IR 1) I [R] v BB 2%

*

* Fhh, BABRIEZETRAEZ T 1 MRIKK RS ETAE, A iefrEhiz.
*/

#include <linux/sched.h> // WEEREFRICHE, & X TAESS 450 task struct. FIGHAESS O (A,
[/ B —YH IR TSR E R N FT g pR B TR .

#include <linux/fs.h> /] ARG XRS5 R (file, buffer _head, m_inode &5) o

#include <linux/kernel.h> // WHSKICHE. & Lo kL R B0 I8 & Yo

#include <linux/fdreg.h> // BKURLCMF. EA RS HISS L2 L.

#tinclude <asm/system.h> // RG:ELIHF. & X T CE SAE SHIRTE/ BT TSR N 9 %

#include <asm/io.h> [/ io SR T8 A VRN /T G R o

#include <asm/segment.h> // BdfffskiCfl. & T KRBT AFa BRI BN 270 9 2R 20

41 #define MAJOR NR 2 /] IR E R AT 2.

42 #include “blk. h” /) BRI SUE KRB S5 R . Heihe 28 50 &5 M R0 22 R 40554 R o
static int recalibrate = 0; // bR FEEEHKIE.
static int reset = 0; /) ARG TEIA TR A ERAE.

46 static int seek = 0; // FIE.

extern unsigned char current DOR; // H¥ui 7% 27745 (Digital Output Register).

50 #define immoutb p(val, port) \ /) EBER GRACHRES5) .

asm__ (Touth %0, %1\n\tjmp 1£\nl:\tjmp 1£\nl:":"a” ((char) (val)), 77~ (port))

[/ XA E ST U E IR &S . RS = TYPEx4 + DRIVE. T ks WHK)E .

#define TYPE(x) ((x)>>2) // BRIREA (2—1. 2Mb, 7——1.44Mb) .
#define DRIVE(x) ((x)&0x03) /) IS (0-=3 XN A--D)
VZ

* Note that MAX ERRORS=8 doesn’t imply that we retry every bad read

* max 8 times — some types of errors increase the errorcount by 2,

* so we might actually retry only 5-6 times before giving up.

*/
/%

% JEE, NE X MAX_ERRORS=8 JEAN K A SRR AR R 20l 2 8 Ik — AT4ERY

* RO A I B e 2, P DAIRATISE B _EAE G AE 2 0 N 77 243K 5-6 s R n,
*/
#tdefine MAX ERRORS 8

J*
* globals used by ’result()’
*/
/% FEREC result O M RZE */

- 176 -

6.8 floppy. c F2)¥

/) IR T LRI E S WL include/1inux/fdreg. h Sk3CfF.

65 #define MAX REPLIES 7 // FDC 23R\ 7 A5 125 A B
66 static unsigned char reply buffer[MAX REPLIES]; // A£J{ FDC i&[0]f¥) 45 A5 K.

67 #define STO (reply buffer[0]) // IR FARAS T 0.

68 #tdefine ST1 (reply buffer[1]) // RAEEBR AT 1,

69 #tdefine ST2 (reply buffer[2]) // RA|4E BR AT 2,

70 #define ST3 (reply buffer[3]) // ARG RS T 3.

71

72 /%

73 * This struct defines the different floppy types. Unlike minix
74 # linux doesn’t have a “search for right type’-type, as the code
75 # for that is convoluted and weird, I’ve got emough problems with
76 # this driver as It Is.
7 *
78 * The ’stretch’ tells if the tracks need to be boubled for some
79 * types (ie 360kB diskette in 1. 2ZMB drive etc). Others should
80 # bpe self-explanatory.
8L #/

/%
TR A S ST AR BER A . 5 minix AFPSE, linux %H
TR IEHISAY A, RO AN B AR A N SR PR . ANFRIT
BB R T VP2 1 E T,

*
*
*
*
sk OO RELERAY AL (BIGnAE 1. 2MB JXB) &) 360kB #AE4E) , 7 stretch’ H T
s KON BETE A T AR RAC R . HE SRV %S H .

*/

/] BB

// size K O X H0

// sect RRRG TE J X B

// head TSk A

// track VAERAE

// stretch X A B R A (b)) 5

// gap o DX T B B (-1 400

// rate PAE T i TP

// specl S8 Gy A AP ER, ARDUA BESK EN T [R]D) o
82 static struct floppy struct f{
83 unsigned int size, sect, head, track, stretch;
84 unsigned char gap, rate, specl;

85 } floppy typel] = {

86 { 0, 0,0, 0,0,0x00,0x00, 0x00 }, /* no testing */

87 { 720, 9,2,40,0,0x24, 0x02, 0xDF }, /* 360kB PC diskettes */
88 { 2400, 15, 2, 80, 0, 0x1B, 0x00, 0xDF }, /* 1.2 B AT-diskettes +*/
89 {720, 9,2,40, 1, 0x2A, 0x02, 0xDF }, /% 360kB in 720kB drive #*/
90 { 1440, 9, 2,80, 0, 0x2A, 0x02, 0xDF }, /% 3. 67 720kB diskette */
91 {720, 9,2,40, 1, 0x23, 0x01, 0xDF }, /% 360kB in 1. 2B drive #*/
92 { 1440, 9,2, 80,0, 0x23, 0x01, 0xDF }, /% 720kB in 1. 2B drive #*/
93 { 2880, 18, 2, 80, 0, 0x1B, 0x00, 0xCF }, /* 1. 44MB diskette */

94 };

95 /*

96 * Rate is 0 for 500kb/s, 2 for 300kbps, 1 for 250kbps

97 % Specl is OxSH, where S is stepping rate (F=Ims, E=2ms, D=3ms etc),
98 * H is head unload time (I=16ms, 2=32ms, etc)

99 #

- 177 -

6.8 floppy. c &%

—
o
o

—
[}
—_

—_
o
\)

[u—

103
104

— = =
o 1O
D |01 wW

107
108
109
110

—_
—_
—_

[
—
N

—
—
wW

—
—
S

—
—
(@)}

—
—
[op}

—
—
-3

[
—
co

—
—
©

—_
[\
o

—_
)
—_

[
[\
[\

—
[N}
w

—
[N}
(IS

— =
Do
o o

—_
[N)
3

—_
[\]
co

—_
[\]
©

—
wW
o

—
w
—

—
wW
Do

—
w
w

—_
w
~

—
w
(@]

—
w
»

— =
w
o |

* Spec2 is (HLD<<1 | ND), where HLD is head load time (1=2ms, 2=4 ms etc)
* and ND is set means no DMA. Hardcoded to 6 (HLD=6ms, use DMA).
*/

~.
*

BRI rate: 0 7% 500kb/s, 1 7~ 300kbps, 2 F7x 250kbps.
ZH specl J& OxSH, Forpr S @b dbdi# (F-1 28>, E-2ms, D=3ms %) ,
H &GSk 45 18] (1=16ms, 2=32ms %5)

spec2 & (HLD<<1 | ND) , Jd HLD 2Rk makista) (1=2ms, 2=4ms %)
ND B A R R AEF DMA (No DMA) , FFERF " idigwfid s 6 (HLD=6ms, {#F DMA) .

I S S S S

*/

extern void floppy interrupt (void);
extern char tmp floppy areal[1024];

VZ
* These are global variables, as that’s the easiest way to give
* information to Iinterrupts. They are the data used for the current
* request.
*/
/%
* NE R E, FOAXERKE BAS PR TR R . e
* T Y ETIE SR I HE .
*/
static int cur specl = -1;
static int cur rate = —-1;
static struct floppy struct * floppy = floppy type;
static unsigned char current drive = 0;
static unsigned char sector = 0;

static unsigned char head = 0;

static unsigned char track = 0;

static unsigned char seek track = 0;

static unsigned char current track = 255;

static unsigned char command = 0;

unsigned char selected = 0;

struct task struct * wait on floppy select = NULL;

/777 R CPOHIERE) Bt CBRIKD .
/) B AT A2 (DOR) (RAIG 2 A2 T-Hig e e e (0-3 XFR. A-D)

void floppy deselect (unsigned int nr)
{
if (nr '= (current DOR & 3))
printk (“Floppy deselect: drive not selected\n\r”);
selected = 0;
wake up (&wait on floppy select);
}
VZ
* floppy—change is never called from an interrupt, so we can relax a bit
* here, sleep etc. Note that floppy-on tries to set current DOR to point
* to the desired drive, but it will probably not survive the sleep if
* several floppies are used at the same time: thus the loop.
*/

- 178 -

6.8 floppy. c &%

/%
* floppy—change () AN IR R F), B DAIX LA Tml LABRAA— 1, M55 o
% VER floppy—on () 224 ¥ & current DOR $i5 [Frs ISR Sh &, {H 24 &) A8 H LA
* BRI RERERR: Rt e i R AT A 2R 5 20
*/
/7)) RONE IR B R e Ol . W SRR RE e TR A 1, AR A 0,

139 int floppy change (unsigned int nr)

140 {

141 repeat:

142 floppy on(nr) ; // R E %Y nr (kernel/sched. ¢, 251) &
// MR ETE BRI S F5 € R nr, I H C@EHFHE THIK, Wik YA T4 3N AT T
/] ERPIRAS

143 while ((current DOR & 3) != nr && selected)

144 interruptible sleep on(&wait on floppy select);
// AT E R ROIK B TS B e R, M AT AR ORATY AR AN S H E I KR nr, AR Sy
145 if ((current DOR & 3) != nr)
146 goto repeat;
/) WECTENTTALEAE, RSN (67 7) B, W RE O, S Sk IR Bk M 1.
// A5G P Bk il R] 0,

($a]

147 if (inb(FD DIR) & 0x80) {
148 floppy off (nr) ;
149 return 1;
150 }
151 floppy off(nr);
152 return 0;
153 }
154

/1)) EHINAEE.
155 ttdefine copy buffer (from, to) \
156 asm (“cld ; rep ; movsl” \
157 2 7c” (BLOCK SIZE/4), ”S” ((long) (from)), 27 ((long) (to)) \
158 ex” 7di” %si”)
159

//// BEE (WIIEA) A DMA JliE .
160 static void setup DMA(void)

161 {

162 long addr = (long) CURRENT->buffer; // 4HiiE=RINZENIX Frab A7 E Cibdib) o
163

164 cli(;

/MR G DAL T A IM LA 7, UK DMA 2% o DX A I I 22 0 DX 4 (tmp_£1oppy_area (41)
// (BRhy 823TA By L BEAE IM HBhEvE FE N SHIb) o SRR S i dir &, WA 7o Bl S o) 2122 I I DX Ik

165 if (addr >= 0x100000) {

166 addr = (long) tmp floppy area;

167 if (command == FD WRITE)

168 copy buffer (CURRENT->buffer, tmp floppy area);
169 }

170 /%* mask DMA 2 #/ /% [DMA JHIE 2 */
// FRIEIE BE b AT A2 um LN 0x10. A7 0-1 F5%2 DMA #3& (0--3), 17 2: 1 KRRk, 0 F£xRVFIEK.
171 immoutb p(4]2, 10) ;
172 /* output command byte. I don’t know why, but everyone (minix, */
173 /* sanches & canton) output this twice, first to 12 then to 11 */
/* A AT . WRERAE N4, HRFENMA (ninix, */
/* sanches Fll canton) #BHTH IR, F5EE 12 1, RJE2 111 %/

—_
—_

- 179 -

6.8 floppy. c &%

// RIS ACHS 1) DMA #5388 11 12 f1 11 55T Gt 0x46, BHL 0x4A) .

174 _asm__(Touth %%al, $12\n\tjmp 1f\nl:\tjmp 1£\nl:\t”
175 “outh %%al, $11\n\tjmp 1f\nl:\tjmp 1f\nl:"::
176 “a” ((char) ((command == FD READ)?DMA READ:DMA WRITE))) ;

177 /* 8 low bits of addr */ /* HuliH{ 0-7 {7 */
// Tn) DMA THIE 2 5 AJE/ Mk A Ards Gl 4) o

178 immoutb p (addr, 4) ;

179 addr >>= 8;

180 /* bits 8-15 of addr #/ /* Mk 8-15 i1 */
181 immoutb p (addr, 4) ;

182 addr >>= 8;

183 /* bits 16-19 of addr #/ /* Hullk 16-19 {7 */
// DMA JURTLAFE IM N AE2s)y ik, e 1619 A il 75 FON 0T 25 472 (i 11 0x81) .
184 immoutb_p (addr, 0x81) ;
185 /* low 8 bits of count—1 (1024-1=0x3ff) */ /* TFEZHIL 8 A7 (1024-1=0x3ff) */
// 1) DMA JHIE 2 5 NHE/ A v s G 5) o
186 immoutb p (0xff, 5) ;
187 /* high 8 bits of count-1 */ /* I ¥4 8 11 */
/) U SAER 1024 T (BN .
188 immoutb p(3,5);
189 /* activate DMA 2 */ /* JF)3 DMA & 2 HiGsk =/
// ALK DMA J8IE 2 (1 BFik, FF DMA2 13K DREQ {55 .

;.J;

190 immoutb p(0]2, 10) ;
191 stiQ;

192 }

193

/7)) R AT (D .
194 static void output byte(char byte)

195 {

196 int counter;

197 unsigned char status;
198

199 if (reset)

200 return;

// PEPAEE RS HI 2% FDSTATUS (0x314) [FPARZS . W HARZS & STATUS. READY Jf- H. STATUS_DIR=0
// (CPU=>FDC), v FicHhei iy 11 %0 HH 8 8 2715 o

201 for (counter = 0 ; counter < 10000 ; counter++) {
202 status = inb p(FD STATUS) & (STATUS READY | STATUS DIR);
203 if (status == STATUS READY) {
204 outb (byte, FD_DATA) ;
205 return;
206 }
207 }
[/ WREEIN 1 JTIREEAGEARE KL, WIE AR, IHHTENHAHME B .
208 reset = 1;
209 printk (“Unable to send byte to FDC\n\r”);
210 }
211

//// RO FDC #0447 A 45 5415 B
GERE AR L T ANFEAT, AEE reply buffer[] . JRENENEE R FAE, 25RFIE=-1
// %Tﬂj%ﬁo

static int result(void)

{

(N}
—_
N}

(N}
—_
w

- 180 -

6.8 floppy. c &%

214 int 1 = 0, counter, status;

215

216 if (reset)

217 return —1;

218 for (counter = 0 ; counter < 10000 ; counter++) f{

219 status = inb_p(FD_STATUS)& (STATUS DIR|STATUS READY |STATUS BUSY) ;
220 if (status == STATUS READY)

221 return i;

222 if (status == (STATUS DIR|STATUS READY|STATUS BUSY)) f{
223 if (i >= MAX REPLIES)

224 break;

225 reply buffer[i++] = inb p(FD_DATA) ;

226)

227 }

228 reset = 1;

229 printk (“Getstatus times out\n\r’);

230 return —1;

231 }

232

/) R A R R B e Mk B
233 static void bad flp intr(void)

234 {
235 CURRENT->errors++; // AT SR IR O 1
// U R SR I B CBOR T I K ARV A OB, TG e i i i, RS5Oz kI (ANEHD .
236 if (CURRENT->errors > MAX ERRORS) f{
237 floppy deselect (current drive);
238 end request (0) ;
239 }

// A0SR SR A REOR T B K RV A OB —F, WIPE S AR, F R AT AT 34
// ARG BRI ERRE—T, Ak
240 if (CURRENT->errors > MAX ERRORS/2)
241 reset = 1;
242 else
243 recalibrate = 1;
244)
245
246 /#*
247 * Ok, this interrupt is called after a DMA read/write has succeeded,
248 #* so we check the results, and copy any buffers.
249 #/
/%
* OK, I Ak B pR E50E 75 DMA B2/ 5 e) e AR, X FEFRATT T LIRS B AT 45 2R
s RSB i X b i O
*/
/11 B E AR R R
250 static void rw_interrupt (void)

251 {
[/ WERR P R P RAET 7, SR 04 1 802 hAFAEH B AR, 2 E IR YD
[/ B AR, BEBCART SN, IR AR I, ST B AR B
/] RIE IR BARAT AL UG SR ERAE

// (0xf8 = STO INTR | STO SE | STO ECE | STO NR)
// (0xbf = ST1 EOC | ST1 CRC | ST1 OR | ST1 ND | STL WP | ST1 MAM, RVi% & 0xb7)
// (0x73 = ST2 CM | ST2 CRC | ST2 WC | ST2 BC | ST2 MAM)

- 181 -

6.8 floppy. c &%

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290

if (result() !=7 || (STO & 0xf8) || (STL & Oxbf) || (ST2 & 0x73)) {
if (ST1 & 0x02) { // 0x02 = ST1 WP - Write Protected,
printk(Drive %d is write protected\n\r’, current drive) ;
floppy deselect (current drive);
end request (0) ;

} else
bad flp intr();

do fd request();
return;

}
// A0SR SR I 22 P DA T M Mk A b, DG B S YRR A 1A A) PN S TR W BN 28 v X
// ARG SR I g2 e X (PR g DMA L BEAE IM kS e k)

if (command == FD READ && (unsigned long) (CURRENT->buffer) >= 0x100000)

copy buffer (tmp floppy area, CURRENT->buffer) ;

/) REBCHATRAEL, S5 ACURIE SR I CESEFbRE) » PR AT e A SR I

floppy deselect (current drive);

end request (1) ;

do fd request();
}
//// BEE DA FEEH R ELERE T SRS G 1 2 dr S+ 007 79340
inline void setup rw floppy(void)
{
setup DMAQ) ; // FIEEACERAE DMA Jd i
do_floppy = rw_interrupt; // ‘EHKE iR REFEE
output byte (command) ; /] RIEMAS T .
output byte (head<<2 | current drive): // Ki(ZE (WikS+IREhE5) .
output byte (track) ; [/ RIESH (HES) .
output byte (head) ; /] RIEZH (W) .
output byte (sector); /) RIEZH GEERXE) .
output byte (2): /* sector size = 512 %/ /) RIESE (FH(N=2)512 FT5) .

output byte (floppy—>sect); // KikZH (RRMLIERIXED o
output _byte (floppy—>gap); // KiESH (HXEFFEKE) .
output byte (0xFF) ; /¥% sector size (Oxff when n!=0 ?) #*/
[/ RIESH CHN=0 i, Fp X XK, BT
/) BERIEMATSEN KRR, WSRSHAT F— R E K.

if (reset)
do fd request();
}
/¥
#* This is the routine called after every seek (or recalibrate) interrupt
* from the floppy controller. Note that the “unexpected interrupt” routine
#* also does a recalibrate, but doesn’t come here.
*/
/%

* G PR AR AR A Tl (R R RSO .

* “unexpected interrupt” GEAMFWD) FREFHSPATENR EEAE, (HAZEIH.

*/
//// FE AL W e AL
/) BRI WRRS A, IRIRIRASE B STO FIRGL Fr e 5 . 25 A AT AR T 5L
// RS A H B A R B R SR T, A5 AR SR A S B M AT I AR B, AR5 TR R 5
// setup_rw floppy () & DMA Jf4itH #8135 5 dy 2 F1 S 40

- 182 -

6.8 floppy. c &%

291 static void seek interrupt (void)

292 {

293 /* sense drive status */ /% FlPOIRGS %/
/) RIERT T BOIRE 2, AT AN S R A4 U BN STO A Sk M aT e IE 5 .

294 output byte (FD SENSEI) ;
/) ARIR I EE R EANGE T 2, B STO AN TSN, sl il Sk T GaE (ST1) ANGE TR HiiE,
/7 W R AR TS, T TR I A i o B B, RS AR T R SRk I, JRIR .

295 if (result() !'= 2 [| (STO & OxF8) != 0x20 || ST1 != seek track) f{
296 bad flp intr();

297 do fd request();

298 return;

299 }

300 current track = ST1; // W& M4HIWLIE.

301 setup rw floppy); // V& DMA % Hh A A Edr & RIS 4.

302 }

303

304 /%

305 # This routine is called when everything should be correctly set up
306 #* for the transfer (ie floppy motor is on and the correct floppy is
307 * selected).
308 #/
/%
* R ECR IR R TS DA IE A B B S A B (s RTEREK S8 E T)
* JF H OO TIEM AL CRREKD
*/
/] S A i R A

309 static void transfer (void)

310 |
/) ESEER AR SEOE T TR E B AR S HL, AR IR VB K) A S5 S S Y
/) ZH(BHL AR, ARDUALRE KNI TR) s 24 2. BESMAUINTRD

311 if (cur specl != floppy—>specl) {

312 cur specl = floppy—>specl;

313 output_byte (FD_SPECIFY) ; /] KIEWBEMRESH 2.

314 output byte (cur specl); /% hut etc */ /) KRiEZH.
315 output_byte(6); /* Head load time =6ms, DMA */
316 }

// BT B AL R R SRR e KB BB, ALl A A6 s K) R A BB A
// TEZEYSH) 74 (FD_DCR) .

317 if (cur rate != floppy—>rate)

318 outb p(cur rate = floppy—>rate, FD DCR) ;
// FIRPIEESAE AR AT, WA REE R R, R,

319 if (reset) {

320 do fd request();

321 return;

322 }

/) FHIEWENET CRFEFIE) , MKE DMA FFREMHN S EEGASNSE, REIRE,
323 if (!seek) {

324 setup rw floppy () ;
325 return;
326 }
[/ AWHAT FTEACEE . A v e A 3 oR iR 38 BT R A
327 do floppy = seek interrupt;

- 183 -

6.8 floppy. c &%

[/ AR UG HETE 5 AN T RN Rk Sk T8 A 2 RS
328 if (seek track) f{
329 output byte (FD_SEEK) ; /] RIERERFE AT
330 output byte(head<<2 | current drive); //KEZE: WS+ YRTKIKS .
331 output_byte (seek track) ; /] RIESHL: WEES
332 } else {
333 output_byte (FD_RECALIBRATE) ; /) RIEFEFRIEA 2.
334 output byte(head<<2 | current drive): //KikZ%. WikS+4HIHIEKS .
335 }
/) R E AR E T EAL, WAk AT AL SR T
336 if (reset)
337 do fd request();
338 }
339
340 /*
341 #* Special case — used after a unexpected interrupt (or reset)
342 #/
/%
* FRERNS 0L — HTESM W (B AP S .
*/

/77 BROR BT A AE W A bR K
[/ ESEROERI P WRR A S (CESED , WERIRFIZ RN A, WERAFRE, 0L
[/ BEERRRE . SRJE PRI TR K o

343 static void recal interrupt(void)

344 |

345 output byte (FD_SENSET) ; // BRI A WARZS A 2

346 if (result()!=2 || (STO & OxE0) == 0x60) // WiHiR[A14E B AL T 2 8idr 4
347 reset = 1; // SN, WESAbRE.

348 else)FIU’EQESZ%}?KIEJI‘TW

349 recalibrate = 0;

350 do_fd request () ; /) AT A SR I

351 }

352

/] AN W SR W e
/) ESEROERI TP WRRZA S CESHD , WRRPIZ R A, MBS AL, 0E
/] BIERRE

353 void unexpected floppy interrupt (void)

354

355 output_byte (FD_SENSET) ; /) RIERT I WR A i 2

356 if (result()!=2 || (STO & 0xE0) == 0x60) // fIHiR[A]4E B 7 W EA%T 2 smd
357 reset = 1; [/ FE, WE SR,

358 else /) AWEF IR IEARE

359 recalibrate = 1;

360)

361

[/ REL R I A B R A
// TR ES FDC RIEFEHR Em SRS, IR ENRERRE.
362 static void recalibrate floppy (void)

363 {

364 recalibrate = 0; /) SRR IERRE .

365 current track = 0; /] EHTHGE S A

366 do floppy = recal interrupt; // ERA R R R BRI HH B
367 output byte (FD RECALIBRATE) : [/ RIFEMA: EPRIE,

- 184 -

6.8 floppy. c &%

368 output byte(head<<2 | current drive); // RIZEZH: LTI MuTKshE 5.
369 if (reset) [/ R A bR G BT WAk SR AT R K
370 do fd request();

371}

372

/) SRS FDC SR T P BR B 7 B T A A R R
/) R ERIERIM RS 4 (ESE0 , RIS HRIEE R T, B kL RS R i 4
/) RS, 55 BT Soain Rk .

373 static void reset_interrupt (void)

374 {

375 output_byte (FD_SENSET) ; /) RIERT I WR A i 2
376 (void) result(); // A PAT AR A .
377 output_byte (FD_SPECIFY) ; /] RIEVE RIS H 2 o
378 output byte(cur specl): /* hut etc */ // RILEZH,

379 output_byte (6) ; /* Head load time =6ms, DMA */
380 do fd request(); /) HPAT AR .
381 }

382

383 /*

384 * reset Is done by pulling bit 2 of DOR low for a while.

385 #/

/% FDC B e i B 8507 H 25 7 %% (DOR) 47 2 ' 0 — < JLSEINAY */
/1] AT S
386 static void reset floppy(void)

387 {

388 int i

389

390 reset = 0; /) BAibrEE 0,

391 cur_specl = -1;

392 cur_rate = —1;

393 recalibrate = 1; // BRI AR & AL

394 printk ("Reset-floppy called\n\r”); // WoRPATHBEZAEHAERE L.
395 cliQ; /] K.

396 do floppy = reset interrupt; [/ VBRI WA R i FH) R A
397 outb p(current DOR & ~0x04,FD DOR); // XF4KkEL#H18% FDC AT A7 4%
398 for (i=0 ; i<100 ; i++) /] AR, SRR

399 _asm_ ("nop”);

400 outb (current DOR, FD_DOR) ; // AR g

401 stiQ); // TEH

402 }

403

//// B JE B e I P TR BE A
/] ESER A A A A7 (DOR) , AR RS M AT He € I IKBh 35 o AR5 TR F AT IR A s S AR
// PR transfer ().
404 static void floppy on interrupt (void)
405 {
406 /* We cannot do a floppy-select, as that might sleep. We just force it */
/% AT BAT B BB IR PR RIK, PO IXAE] g 2 5 IR FEREREAG . FRATTIUZIB Al e | Ik F */
407 selected = 1; // BHEER TS ARE,
// AR IR B g T 5 B H 25 A7 48 DOR W AN TR], DU EE B DOR DA M AT IR B4 current_drive.
/) ERTREIR 2 ANFEEIT], AR5 R AR BB AL pR U transfer () o 45 W) B HE 1R B KB 052 5 A5 ok 450
408 if (current drive != (current DOR & 3)) {
409 current DOR &= OxFC;

- 185 -

6.8 floppy. c &%

410 current DOR |= current drive;
411 outb (current DOR, FD_DOR) ; // TR A A A 24T DOR.
412 add timer (2, &transfer) ; /IS TINGE I 3% AT i R B
413 } else
414 transfer(); /] PAT A S A R A
415 }
416
/] RETEE SR AL B R AL
//
417 void do_fd request (void)
418 |
419 unsigned int block;
420
421 seek = 0;
/) WEREAIARE CEAL, AT A S AL A, IR,
422 if (reset) {
423 reset floppy () ;
424 return;
425 }
/) WEREFR EAR G AL, AT A B I E AR, IRkl
426 if (recalibrate) {
427 recalibrate floppy();
428 return;
429 }
// R SR I Sk (20 kernel/blk_drv/blk. h, 127)
430 INIT REQUEST;
/R SR I Gk R RS 45 TP R R B2 2 (MINOR (CURRENT->dev) >>2) 15 4y & 5 | UG i 8 5 Bk
431 floppy = (MINOR (CURRENT->dev)>>2) + floppy type;

) R RTIRED B AR R S (RSN 88, WU RRAE seek, R EHEAT BRI
// RIE BRI AT KB A% o

432 if (current drive != CURRENT DEV)
433 seek = 1;
434 current_drive = CURRENT DEV;

[/ BEEBE AR DGR S 5E AR FAE (1 52 DB, B U AR X s 2 i L
/) WAL XEUN 2 S BX . A AOZ AL SR I, AT — MR

435 block = CURRENT->sector; // WS RAE SR I AL 45 B3 X 5 >block.
436 if (block+2 > floppy—>size) { // WA block+2 KT-Wist X D%, W
437 end request (0) ; [/ GRS IREE G K Io
438 goto repeat;
439 }
[/ SR NAERGE BRI RS, Wk, BAES, MSEEES O TRIREEA FERS SR
440 sector = block % floppy—>sect; // HCUf DX A3 A f DS BOBORE, #3068 BRI 5.
441 block /= floppy—>sect; /) HECUR A DO BEREGAE o X HODORE A3 dR i K
442 head = block % floppy—>head; // ARG O WSRO, SRR L T
443 track = block / floppy->head; // ARG O TSR BODRE , AR E I HEIE S
444 seek track = track << floppy->stretch; // N TIKZ&EH R BATRE, FFES.
[/ WRSIE S5 SR TR AN], B S TEAR A seeko
445 if (seek track != current track)
446 seek = 1;
447 sector++; [/ AL b SERE R DU N 1 SR
448 if (CURRENT->cmd == READ) // AR SR IR AR, M E AR A A
449 command = FD READ;
450 else if (CURRENT->cmd == WRITE) // dnffifskuid & S5H4E, WEREE G0,

- 186 -

6.8 floppy. c &%

451 command = FD WRITE;
452 else
453 panic (“do fd request: unknown command’)

[/ BSIERES, T e IRah 28 208 I 5B AT i f il B) CGRg 4D 2 s i) 21 B st 18
// B¥ floppy on interrupt(),
454 add timer (ticks to floppy on(current drive), &floppy on interrupt) ;
455 }
456
/1] BERGEHIE .
/) B AR AR A K SRAL B R B (do_fd request (), FFi& B A PWI] (int 0x26, XofNAGE
// HWHERAE S TRQ6) » ARG HE X P W55 M BE#, FOVFR LA 48 FDC & I% Wik SR (5 5 .
457 void floppy init (void)

458 {

459 blk dev[MAJOR NR].request fn = DEVICE REQUEST: // = do fd request().

460 set_trap gate (0x26, &floppy interrupt); //WEKELFEIT] int 0x26(38) .

461 outb (inb_p(0x21)& 0x40, 0x21) ; /) BRI W KRR, STVF
[/ BB R IE T WA SRS .

462 }

463

6.8.3 HEEFER

6.8.3.1 MERFNF[HIZEFS

7 Linux 41, #OR LRSI 2, IKBE%S = TYPE*4 + DRIVE, A DRIVE 2 0-3, 2% W 5k
XA, B. CHiD; TYPE HIKMHIZEAY, 2 Fom 1.2M BIK, 7 Fon 1.44M B8K, RN floppy.c ' 85 475
X E (floppy_type[]) BUALIKR S A:

0 AH
360kB PC %Ki
1.2MB AT R IK;
360kB 7t 720kB UKz % i FH 5
3.5" 720kB #dit;
360kB 7 1.2MB Kz gs i di s
720kB 1 1.2MB X548 4 1] ;
1.44MB #9K .
Bilhn, Kk 7%4 +0=28, FrLL /deviPSO (2,28)F5111/E 1.44M A BRAN 3%, H ik #5 & 0x021c.
A B /dev/atO (2,8)F5 & 1.2M A BKZh%8, k& 5)& 0x0208.

6.8.3.2 6.7.3.2 HFBITHIRR/IESE
SR A AR R AR LU B o e PRI 7 BE T 1) 4 NI T, ISR AN SR A A7 38, W 1.2M
(IR AL 88 LU — 26 1

~No ok~ wWwDN B

6. 8 EITH| im0

1/0 i EEM AT AR AR
0x3f2 5 Boriml 2 Ar8s (DOR) (Bl %17
0x3f4 j=§5% 52
RIS S FDC 1k A% 17 5 (STATUS)
FDC %l 77 £7 45 (DATA)
0x3f7 S N T e (DIR)
0x3f7 Ry T A4) 25 A7 2% (DCR) (14 4 2 1))

B DOR (B ilim 1) J&—A 8 MrZfras, e HRsh#s ik TT)a . IKshesikFe. Jash
[A7 FDC AN SR VFIZE 1E DMA e ik .

- 187 -

6.8 floppy. c F2)¥

6.9 MTHEBHEREY
D7 D6 D5 D4 D3 D2 D1 DO
wa | ma | B | ma | ad | mg
D3ED| BikC| ik B | ik A| ik | FDC | TCRIEHE

D7D6D5D4 - 43 il ihluk s 4% D-A H1 ik, 1 E8h%ik; 0 XM Dk,
D3 -1 fuVF DMA MR T R; 0 2511 DMA A1 g K s

D2 -1 BshKIK; 0 AT,

D1DO0 - 00-11 H Tk F A RS 45 A-D;

FDC I R A A gt — > 8 AL 3y frds, M1 M AR B2 4% FDC AR IK B 4% FDD IOFEARE
HH, £ CPU [FDC KX fir 4 Z R s FDC SRHRIF TR L AT, #EDR IR A A7 2 RS, BUAI
Y FDC Bl A A7 a2 gl DAL Bl A1 1K 7 o) o

3<6.10 FDC ERSITHIBREX
D7 D6 D5 D4 D3 D2 D1 DO
BAEH | 4% |[JEDMA| FDC | #5K D | #UK C | UK B | #0K A
weg | Jim | Ak i1 1 i - -
ROM | DIO | NDM | CB DDB | DCB | DBB | DAB

D7 - 1 7R FDC Hfs 2 A7 2% CHE &l 44

D6 -1 £onEdiE M FDC 3| CPU; 0 R/~ CPU % FDC;
D5 -1 %/r FDC LAELEAE DMA J5;

D4 - 1 %R FDC 1EAL T ir S PAT IR s

D3D2D1D0 - 43 HMCER IS 2% D--A TR A .

FDC (& DN 24247 (USHG A T e B3 arfrds . R BIg R4, BT

Z L RE — A2 A7 o8 B BLAE S o 10 0x3f5. 7BV) USRI A7as), F0RASEHIR DIO J7 A7 4754 0

(CPU > FDC), Vi M A ras i W Je 2 o FEE2HN s By AT TE FDC AU G A H i e 4h R, 10 45
BE R H 74T

AN T4 (DIR) HANL 7 (D7) WHEAR, KRS E 7 R . HoR-BAr T %
il o

A) 25 A7 2 (DCR) T 3E B FEAN RIS AL IR By 3 A A A B A6 % AU G 2 47 (D1D0D,
00 - 500kbps, 01 - 300kbps, 10 - 250kbps.

A EERIA LT LU 16 i %o BN SR = AN B B AT B S R B

2B BUE CPU [FDC KA P MBS E 7Y . BE&EmAINE NP REmA T (WmAiE).
G 0--8 TS E. HUTHBE FDC BT A& HC EE . ZEBUTIYBE CPU A INFFrt, — %
JEIlIT FDC & H R W SRR AN S PAT IS . W12 CPU K& 1) FDC fiv & AL 2650k,) FDC] LLLL
7 X DMA 7 T Rl UL 1775, DMA J5 U 7E DMA #8845 8 R, FDC 5
LERAT O AR 2 A AL 1558 . LI DMA #2882 i 7= 1 B 2 b5 5 %0 FDC, & ih
FDC & Hi i sk 5575 %0 CPU $UATEBEZE . &5 MY B i CPU 132X FDC %l 75 A g8 iR IR, MM
3515 FDC #r AT IS5 5 o IR [9] 45 SRAAR KB Ry 0--7 52755 o 6 T30 1% [45 SR B 161 i 4, WY) FDC
RIERT I BOIR A Ay 2 SRR E RS

6.8.3.3 DMA #=H 22 4RI

- 188 -

BTE PR EWSIFE P (char driver)

7.1 #EikR

fE linux 0.11 WA, P AFBEaE 1 BRI I 2 b e a MR AT 280 B2 . ARG it i] T i 4
BEA I NS A TR AT o AT SR KBIAR K TAR B] 222 M.J.Bach) CUNIX #:4E RS0 8E1) 2 10
T 3 IR

BIFE 7.1 linux/kernel/chr drv B%

XA PNAN BRJEBEEI(GMT) i8]

=] Makefile 2443 bytes 1991-12-02 03:21:41 M
£ console.c 14568 bytes 1991-11-2318:41:21 M
&| keyboard.S 12780 bytes 1991-12-04 15:07:58 M
=] rs_io.s 2718 bytes 1991-10-02 14:16:30 M
€1 serial.c 1406 bytes 1991-11-17 21:49:05 M
£ tty io.c 7634 bytes 1991-12-08 18:09:15 M
M

tty ioctl.c 4979 bytes 1991-11-25 19:59:38

7.2 IL.\1Z|:IjJ Be E

ARFEFEP Al =, —HU2 0T RS-232 HATLR IR IRANFE /Y, CLFEFET rs_io.s Fl serial.c; 73—k
W KB AR, XS WK SR keyboard.S FlE G ET@BBJJ&J? console.c; =&
R IRARE S ROy, S A AN AT tty_jo.c A& HIRE T tty ioctl.co R IHIFRATE
e W 28 w42) IR S AR P SR A i 2 %Eﬁﬁj\ﬁzﬁﬁﬁﬁ%ﬂiﬁéEU%Eﬂ‘]EI‘J?%%ZWJﬁE
7.2.1 ZiFRFNIEFIRE

i SR BN FE T 4 S e 4, (R & & FIBERE 2 I AREm s, X T Adan B b T — e i
B, H PR RN RS (Raw data), Rl iR P IAC G, #ikitey— MO RE; it
FE 1) 2t ROL HEE, ELu e AR5, Wl oo 2o e e b ol ok B3 AT 2R Ml R ik B FE . AR
P & i R e o At N\ i LR B 4 O 5, AT AR e AR o s Rl . — P YA (canonical), 1t
I8 I A P B B A T A e A P, ARG A . BndE TAB P45 ok 8 NEKE T4, HEEA
IR 24 Cbackspace) F il M 4 A THIBEE N R0 05755 o 3 FH IR A B pR 80— R PR A 47 BRI (line - discip;ine) 5
Yo F—F2AEE B B R AA (raw) B . AEIXFIEECT AT R e AN A 28 vy 15 BERE 2 i) A% 26 258l
T AR AR AT AR 4 b 2

TEA I IRANFE T, MRS RS RR, URAEPATRAR T AL E, v PA PR i H K
RSP L EHBER RN O AT LU R i s s B R R Fhia i e R .

- 189 -

7.2 BARTIRERIR

Lo YR A RE P b2

AR

[ey

El7. | &inEENIEFITHIRIE

7.2.1.1 BTEENX TR

TR ISR P E B T —A tty_struct Bl 451, FEIZE5H T &5 = AN IhREA R T FF 220 BA
o —AEMBAIIRAFBH BN G BIRGR PR R — M HSRAE B 2 2 (5 B %0) %
I A — NHRAAREE L7 S NE, X AEAT IR 7 SR s 5 R ik A4 L
F& (backspace) F#FARMG I “3” (cooked) T ANEUE . (EEE N P 4 N BOBLHEIS, I A ER Y gnRE P
SN TR R AR NS N pP A F A, Tt el R W AR B R R FH) C RO AR BE A IR AR B T AE

YRR)N SRR N, A IR SRR k2 TR AT RO R L, R BRI R 1R T A
PR B S AT, R Ed ik B 2 EIBIOR
7.2.1.2 [RIAHEN T HIAb I

WA RG] foctl, X2 umSHORATE S, AT DA I R B N AT R W
AT AR PR R . IR PP AR S GEph A o IX L8 BAR AT TR 2t 1) termios £ 44, A7)
PREL AR X e B AT

MBS, OB R R R AL, W S0 L s TAEE A, AT B R 7
ST BN AR R A B AR IS T, T IR R e A AR . R, EH T RS
FH read I, 5 VAZAE RS ZLLHIWT RGE A read f14 2 552 TR M) 3X0Ks FH 283 termios 45
R VTIME F1 VMIN $86 P57 008 o XA SR EREB I E INE . VMIN Ro=oh T dglE, &
S B D ARG VTIME 2 — Mg/ 4845 2 I
7.2.2 I=H 8 RznIEF

linux 0.11 WIZAEH T — /44l tty_table[PRIRAT RSB EKm 4 1005 8 o BB IS — ANl
ghHy tty struct, FRORATZu MRS M IEAE B s . Ktk SR HE B 1 termios 45
Ry, 17 B A B () B0 DU AR A FEHR (1) 3 A tty_queue S5 KK ZRFBAAI T CBRFR A 45 28), WA T4
PROAFI A B S 1K 705 . B041 55— tty_table[O)H T Atz thl £ 45 B, tty_table[1]/1 tty _table[2] 43 %l
T ARA7 SR AT 200 15 8 IR B2 e A FE 1) B R S5 A A e AT 1 2 DS 2 T WL 7.2 BT

- 190 -

7.2 BARTIRERIR

tty struct 54 tty queue £t

“| termios &5#4

Bo¥ 3k (head)
I (tail)
ZZ X (buf)

R AR

tty BLRAFI
(read q)

tty H5EASI
(write q)

tty gAY

(secondary)

E7.2 Lini2FFREUREHN

BZBAS read_q FH T A MBS BAR AT 24 N W 546 Craw) 47741 ‘B BAS write_g F T4705 2
il 6 S b B R AT 4 22 Kt . Al B BAF secondary I T AE I AT HURR AL B Gk) i o sicdls
Bk 2 (cooked) X Hi 4 o

X 2SR T o R —MEEIS, U PR AT AN TR, Lo DR T W Y.
Wil sKAE 5 IRQL AN TS INT 33), W Iyt it v DR Ak BEARE o gl 2 MUBHEASE 428 1) 88 452 N 0SB (1 B 41 i
SR S MR A5 FH (P B A B R B BT . 55, TN tty B2BA% read_q HH o AR5 1 T R BT AL BERE)P 1Y) C
PR do_tty interrupt(), ‘& X E AT K%L copy _to_cooked()XTi% AT I UEAL], FFHON tty 4
BB\%1] secondary /1, [FIAFHEZ PN tty B RAS write_q o, IR S0 S K% con_write(). B
FazZumfEl e (echo) JEVEREN, WhxFfres WonBIpi%e . do_tty_interrupt()F1 copy_to_cooked()
PRALAE tty jo.c TPSEEL, FEANERE WL 7.3 B

AL P BT Ab B

TR B

| put queue

do tty interrupt

read q
copy to cooke

con write
J

secondary

SEEAE AT

write q

a— T

E 7.3 =5 G2 P IE I 2

X HEREAT tty BERAE, REIKBIRE R T A TR T AR BN . RSS2 A write_q BOH
W, W P B IX AN TAF, S AR FRBON write_q H o A IR AR IBON write_q BAFI B I

- 191 -

7.3 Makefile 3C4F

I write_q T, I 2 0m 454 tty_struct R C IS REL, HE write_q 2 BA S Hp £ B B0 6 .
X6 2, S REUE con_write(), £E console.c FEFHTSZE.

AR & LB I IR SR, EE LAY . — e AP WAL FERE T keyboard.S, %A
TAANH PN AR IO read_q 22 BASIH s 5 —ANE b o s AL EEFE)T console.c, FT- M write_g
FAF R AR5 I s fE B e
7.2.3 BITRImIRENIERF

XTI RGP AT I RN Ay, BT TR S G AR AL, b T EEREAT AT A N
iy A FR A o B BT N RS TR R AT R R A BERE R ION 2B) read_q Y, B i AT R G A — RE)
(e

Bilhn, AF—ANEEE AT D 1 2, BN RPR T S AT AL B L, SR AL
AT 1 K . I ER AT b A ERRR 7 b T R TN FR AT 2 1 (9 tty BS2RAA read_q T, AR S TR]
HRIBT AR EERE [C B4R do_tty_interrupt(), ‘& X EH B AT HEI B8 2 copy_to_cooked ()% i AT REA T ik g Ab
B, JFION tty BB\ secondary H, [RIFNHEIZ EAFON tty 5 A write_q F, JFIRHS BT 1K
$rs_write()o ZBABCLAE FAFIOIELS R AT, LI A0 % & um) 8 Cecho) J@ MW E 1), NiZT
FF o WoRAE AT Kt b L

YRR TS A B N AT S LA, BRI RS S ARl SR N i 1) ttystruct £ 254
P)5 R U AT 0 5 R L rs_write()

FRAT #8315 BRI rs_write()7E serial.c FEP sl FRAT IR WTRE AL rs_io.s HHSEHL.

7.2.4 ZinREhiEFEO

W, HPOElE SRR S WA ACIE R, FANREHAA A SEARR, AN A SR G
=G G s, % 0 7 SR SO R R 28, DU S0 I SCARAR DO . F P o]
DLEL A0 F SO R G FH R U) e % o 20t SRS R AR IRIRE A 0k B 1R SO R e de fit TR A2 1 ek . &
UK SN R 5 R G R I A tty o.c SCAE R R T B A S B . HL R S T R i B A
tty read() RS 2 R £ tty_write(), DL AATHLI R %L copy_to_cooked(). 534, 7E tty_ioctl.c #2)7H,
SEIL T S i S H P N AR R (BURGE D tty_ioctl(). £ i (1)1 B 2 HUR I 28 i B0H 45 74
H termios g5k, RS LZ, R E L, 2% include/termios.h ST LR o

XA 2, 1T VA AR AT NS 75 2 VEt. {H7E linux 0.11 H A —ANMT R 6 25,
I termios Z5 4 AT RN B e line NEAE], # % E A 0,

7.3 Makefile 3z

7.3.1 TigetmiA
PR RSRET I gn B BT .t Make T HARAFEH .
7.3.2 RELERE
BF 7.2 linux/kernel/chr drv/Makefile {4

#

Makefile for the FREAX-kernel character device drivers.

#

Note! Dependencies are done automagically by ’make dep’, which also

removes any old dependencies. DON'T put your own dependencies here

unless it’s something special (ie not a .c file).

#

FREAX (Linux) WA% R 2 IS FE P 1K) Makefile A4

R HOBOCRE M make dep” HBNHHTIY, ‘B4 AZLBRECRIAGEE . AEHEIRA K
MO ARG RIEX B, BRARRRIN SO (BEIASE—A. ¢ SCHFRIERD

[o [O1 [oo DO [—

(=N Nejloo]

R =gar # GNU (M) —BEHISCIFARBERER, FT- I B LR VRS SCAE A Sl O A
S

A
10 A =gas # GNU FIIC AT

- 192 -

7.3 Makefile 3C4F

11 LD =gld # GNU [(EHRLT.
12 LDFLAGS =-s —x # E#RETITAMNSEL —s fth U P AT a5 05 5 —x MIBRITE JR 555
13 CC =gce # GNU C 1B S gmitss.

N AT C PRI, Wall WoRPT A M ESE R -0 ik, AU ARRS K BRI HAT I 1] 5

-fstrength-reduce LATEIA AT, HEFREE AL E; —fomit—frame-pointer 44 Mg LRAEA L EL

MHERLFREL: —feombine-regs GrIfFAifrdy, WD AFAEARMMETH; —finline—functions ¥ Jr

PR/ R B IR A B P —mstring—insns Linus H CHUMBRAEIR, LLS A AL

—nostdinc —I../include AMi BB IS SO, AR+ H i (. /.. /include) o

CFLAGS =-Wall -0 —fstrength-reduce —fomit-frame-pointer —fcombine-regs \
—finline—functions —mstring—insns —nostdinc -I../../include

CHUALBEIEDT. —E JUsqT C prAbER, XHFTA € M C 27 dEAT A 21 4 Ak BE 5 S %t B bR vy

A e B W SCPE Y nostdine —1.. /.. /include [FAlHT.

CPP =gcc -E —nostdinc -I../../include

—
(IS

—
(@a]

acgf=>
~ [>

NI AR 7R make AR TR AT HE BT A 0. ¢ SCPFRIRAE AR s TEGRFE)Y o UK dir &
JR1E gee KM CFLAGS Prfig s Mk it C AU G P Jm AREAC stz 1k (=S) , i
AN C SO BN ATE AR SO o BRI DL T B 2L RV S R 7 SCA 44 1 Dt € SCE 44
LB e b s JE8. —o Rondaat i SCF AR, sk s (i$e) & A3 H A,
RS AT, IRRRERF G 4. ¢ I3

18 .c.s:
19 $(CC) §(CFLAGS) \
20 =S -0 $*k. s §<
R HR T . s IR SO i k. o HARSCIF. 22 1772 SEBZERE 1) Bk @ 2o
21 .s.o:
22 $(AS) —¢ -0 $*.0 $<
23 .c.o: # LB, * ¢ X% 0 HERSUF. AHHATIER:.
24 $(CC) $(CFLAGS) \
25 -c -0 $*.0 $<
2
27 OBJS = tty_io.o console.o keyboard.o serial.o rs io.o \ # € X oA 0BJS.
28 tty ioctl.o
29
30 chr drv.a: $(OBJS) # 0 T 5E4A 0BIS Ja A H T i i w2 3%E 4 i H bR chr drv. a FESCf.
31 $(AR) rcs chr drv.a $(0BJS)
32 sync
33

%} kerboard. S VL4 fE/ P AT IALHE . —traditional ETHH X EEFAEMS Sl H S FALSE K C dRidess.
AN FEP LY M kernboard. s.

34 keyboard. s: keyboard.S ../../include/linux/config. h

35 $(CPP) —traditional keyboard.S —o keyboard. s

R FEE T YHUT make clean’ I, MUSHAT FiHIMI@4, LERITH G
#OERA IS T em’ RESCPEINBR i, TEI-F 5 SO B AAFAERI SO, IF HA B IR

37 clean:

38 rm —f core *.0 *. a tmp make keyboard. s
39 for i in *.c;do rm —f "basename $$i .c .s;done
40

NS H ARSI TR 2 A SO 2 R RIS O R o VR

AT R AR sed X Makefile SCfF CRIJEASCH:E) HEATALEE, #H A MR Makefile

U ### Dependencies’ /TR HIATA LT CRIM 48 FFLEHIAT) » FFA L tmp_make

OGSO A4 ATHIVEREDD o SRJE X kernel/chr drv/ H 3% FHIFEAS C SCHHUT goe Tk B/
M AR VR T BERR 4 RN H bR SO AR SRR, I FLIX SR make 157k

T —ANE SR, T B R A make B, HL gk SR R A0 N B R R SCAE I B bR

- 193 -

7.4 keyboard. s f£f%

SO I BRGSO TR RS IO ITAT Sk SO R AR - S TRAR B A5 A I 2l
3CPF tmp_make ", SRJE ARG N SO B RGHK) Makefile SCIF.

41 dep:

42 sed ~ /\#\#\# Dependencies/q < Makefile > tmp make

43 (for i in *.c;do echo —n "echo $$i | sed s, \.c,\.s,” 7 7; \
44 $(CPP) -M $$i;done) >> tmp make

45 cp tmp make Makefile

46

47 #### Dependencies:

48 console. s console.o : console.c ../../include/linux/sched.h \

49 ../../include/linux/head.h ../../include/linux/fs.h \

50 ../../include/sys/types.h ../../include/linux/mm.h ../../include/signal.h \
51 ../../include/linux/tty.h ../../include/termios.h ../../include/asm/io.h \

52 ../../include/asm/system. h

53 serial.s serial.o : serial.c ../../include/linux/tty.h ../../include/termios.h \
54 ../../include/linux/sched.h ../../include/linux/head. h \

55 ../../include/linux/fs.h ../../include/sys/types.h ../../include/linux/mm. h \
56 ../../include/signal.h ../../include/asm/system.h ../../include/asm/io.h

57 tty io.s tty io.o : tty io.c ../../include/ctype.h ../../include/errno.h \

58 ../../include/signal.h ../../include/sys/types.h \

59 ../../include/linux/sched.h ../../include/linux/head. h \

60 ../../include/linux/fs.h ../../include/linux/mm.h ../../include/linux/tty.h \
61 ../../include/termios.h ../../include/asm/segment.h \

62 ../../include/asm/system. h

63 tty ioctl.s tty ioctl.o : tty ioctl.c ../../include/errno.h ../../include/termios.h \
64 ../../include/linux/sched.h ../../include/linux/head. h \

65 ../../include/linux/fs.h ../../include/sys/types.h ../../include/linux/mm. h \
66 ../../include/signal.h ../../include/linux/kernel.h \

67 ../../include/linux/tty.h ../../include/asm/io.h \

68 ../../include/asm/segment.h ../../include/asm/system. h

7.4 keyboard.s 2

7.4.1 ThEefEiR
AN iR SRR P WAL PR AES SO, make RIS T break FoR
SRR IT(BOT)

X1 AT SSRGS, B SR, U NS AR, BT, S RN,
Mg OxFO, B 2 NISSERE PR . O T RIAEA T, Wk N DU AT B R H R 4
% T 2220 PCIXT AdEEERL FFIH6D . PRIHIX LA PCIXT RO G 3E4 T AL FERA v

7.4.2 K5ERE

BZ 7.3 linux/kernel/chr drv/keyboard.S 3Xff

/%

*

linux/kernel/keyboard. S
*

(C) 1991 Linus Torvalds
*/

| O O [~ Lo Do [—
*

/%

- 194 -

7.4 keyboard. s f£f%

—
(=N Nejiloo]

—_
—_

DO | = === ===

28

* Thanks to Alfred Leung for US keyboard patches

* Wolfgang Thiel for German keyboard patches
* Marc Corsini for the French keyboard

*/

/%

* J&T Alfred Leung #IN T US BEAL#N T FET;

* Wolfgang Thiel ¥SIN T B BRI #N T FE7;
* Marc Corsini ¥ T V2 SCBERLN T FEFP
*/

#tinclude <linux/config.h> // WHIEHCE k3O, 58 SCBE BTG 5 AR AL 28 (HD_TYPE) mJ &L,

. text
.globl Kkeyboard interrupt

/%

* these are for the keyboard read functions

*/

/%

* DL IR H A A

*/

// size JEREBLZMX MKE CFED .

size = 1024 /* must be a power of two ! And MUST be the same

as in tty io.c !l %/
/% BEAUE 2 kDT FHE tty o, c FMEITEC L */
// LRI g ph A R v [m A +/

head = 4 // G Sk ERE T B -

tail = 8 // G b R B .

proc list = 12 /) ERPZE M EAS R B A% o
buf = 16 /) M FB AR

// mode JEHEBLFF IR 4% N ARSI

[/ RN KNG (caps) « ACHEE (alt) #HlEE (ctr]) FIFpEE (shift) FPARES
// LT caps % T

// L 6 caps BEFPIRE (N i%5 leds W0 NAREAL—HF) 5

// BL5 A7 alt BT

/] AE4 i alt BT

// L3 A ctrl BE T

/] AE2 FEctr] BEET

// A1 A5 shift 8% N

// BE0 /& shift 8% K.

mode: .byte 0 /* caps, alt, ctrl and shift mode */

[/ BUTBOE B (num-lock) « K/NE R (caps—1ock) FIRBNHE 8 (scroll-Tock) i LED ROGEIRES
/) AL T3 40 ARH;

// 4L 2 caps—lock;

// A7 1 num-lock (WU E 1, W RI¥ EEC T8 B (num—Tlock) RIGE N 5E) 5

// BL0 scroll-locko

leds: .byte 2 /% num-lock, caps, scroll-lock mode (nom—lock on) */
// MRS 0xe0 B Oxel B, Eixbrii, KGRI E 1 A8 2 MR, S WHRE U .
// AL T =1 WE Oxel Fridis

// A1 0 =1 W 0xe0 #5375

el: .byte 0

- 195 -

7.4 keyboard. s f£f%

32
33
34
35
36

55

56

57

58

59
60
61
62
63
64
65

/%

* con_int is the real interrupt routine that reads the
* keyboard scan—code and converts it into the appropriate
* ascii character(s).

*/
/%

* con_int JESEFRAP IBTACEEFRERS, FH T e B AL O 0 LA i
* AR ascii S5

*/

//// B AR PR PN I

_keyboard interrupt:

pushl %eax
pushl %ebx
pushl %ecx
pushl %edx
push %ds

push %es

mov]l $0x10, %eax
mov %ax, %ds
mov %ax, %es
xorl %al, %al
inb $0x60, %al
cmpb $0xe0, %al
je set el

cmpb $0xel, %al
je set el

/) ¥ ds. es BET AR B NI EL .

/% %eax is scan code */ /% eax "PAEFIHIE */
// EHEREDal.
/] ZAARGE 0xe0 M7 U SR N BkAL 31 5 L e0 bR Ui At

// RS Oxel M2 I SRUZ MBEEE 2 E el AR AU At.

call key table(, %eax, 4) // JHHHEACFEFLF ker table + eax * 4 (ZW. T 502 17) &

movb $0, e0

/] AL e0 bRk,

// N HIZ B (55-65 47) A& E 105 H] 8255A F) PC ARfESEAL LB DEAT REAF ST AT AL BE . I 1 0x61 &
// 8255A Kyt 11 B M, % i S 7 A7 (PBT) H T4 LA SR VE X B i A i AR B

[/ IRBRE R T R A A At 2

el el:

1:
1:

inb $0x61, %al
jmp 1f

jmp 1f

orb $0x80, %al
jmp 1f

jmp 1f

outb %al, $0x61
jmp 1f

jmp 1f

andb $0x7F, %al
outb %al, $0x61

movb $0x20, %al
outb %al, $0x20

pushl $0

call do tty interrupt
addl $4, %esp

pop %es

pop %ds

popl %edx

popl %ecx

Jridr AR I, SRR S R AV T AR
// BUPPT 3 I BARAS, FoA2 7 T fotr/ 451k (0/1) B it
/] FEBR—2,

// al fr 7 B (B TAF) .
// FHEIR—%.

// A PP1 PB7 {oi ‘&7 o
/) IEIR—4,

// al 1.7 KA,
// M PPT PBT A AL (SLVFBEEL TAE) .

// 1) 8259 HHHTES R kik BOT (Hh 440 55
/] FERIG tty =0, fEASHNIK.

/7 PRI PR Bt 52 A S B I A TR T T AT 22 BA S
[/ EFNEMSE, H R A8, IF R e

o

- 196 -

7.4 keyboard. s f£f%

75 popl %ebx

76 popl %eax

77 iret

78 set e0: movb $1, €0 // WCERHAHHT F 6 0xe0 B, BEE e0 drdk (f70) o
79 jmp e0 el

80 set el: movb $2,e0 // WCRHAHREET S Oxel I, EE el dxdk (A7 1D .
81 jmp e0 el

82

83 /%

84 * This routine fills the buffer with max 8 bytes, taken from
85 * %ebx:%eax. (%edx is high). The bytes are written in the
86 * order %al, %ah, %eal, %eah, %bl, %bh ... until %eax is zero.
87 */
/%
* FHNZ TR ebx:eax HINIRE 8 NMEFFRAZMATIH . (edx J&
* TS5 NTFRIBT 2 al, ah, eal, eah, bl, bh. .. FHL 3 eax 27T 0,

*/
88 put_queue:
89 pushl %ecx /] fRAF ecx, edx WH.
90 pushl %edx /) WEERIE tty gz AR .
91 movl table list, %edx # read—queue for console
92 movl head (%edx), %ecx /] WGBS LR E Decx.
93 1: movb %al, buf (%edx, %ecx) // B al PIRFERTRON G BB Sk AR5 O B AL .
94 incl %ecx /) SKIREFRTRE 1 75,
95 andl $size-1, %ecx /) CAZRIR DX R/ NS FR A (8 H IR [FT 28 R X TF4R) o
96 cmpl tail (%edx), %ecx # buffer full - discard everything

/] SkFREr== R ARE G (P A S) 2

97 je 3f // S, S AR R
98 shrdl $8, %ebx, %eax // ¥ ebx 8 AL LLHRFAI A 8 AL F eax 1, {H ebx ANEZ,
99 je 2f /) BT A (G T 0) Wk .
100 shrl $8, %ebx // ¥4 ebx LRI AR 8 A7, FHBKHL BIbRT 1 4RaliifE.
101 jmp 1b
102 2: movl %ecx, head (%edx) [/ O PN T BAF, LR A7 Sk A8 5T o
103 movl proc list(%edx), %ecx VAR AN I X eI =k e
104 testl %ecx, %ecx /) REWAESS SR ARE &5 o 2 (SRR A RS 2) o
105 je 3f /] T MBkA
106 movl $0, (%ecx) /) A WPEAZRE N 1B AT 4IRS (Wi i 3t A .
107 3: popl %edx // AR M FF AL A IR]
108 popl %ecx
109 ret

110
// N BACRE AR ctrl 5E alt 5400, 20w EACAR G P AHNAL o a0 SRz H RS 2wl 2t
// 0xe0 G (e0 b5 EAL) » WU HHIZ N R 28 A AN ctrl B¢ alt 88, WXV KE ctrl B alt
/) AR AR & mode T EUAR AT o

111 ctrl: movb $0x04, %al // 0x4 JEElbRE mode S ctrl B8XGHI [ELARFAT (BT 2) o
112 jmp 1f

113 alt: movb $0x10, %al // 0x10 &R & mode WA alt BEGH [LU (67 4) .
114 1: cmpb $0, €0 // e0 bRE BN T (% R A AR ctrl B alt fE0) ?
115 je of /] AT

116 addb %al, %al [/ s W CRSEE AR A SR R AR G AT (B 3 B4 5)

117 2: orb %al, mode // WEBAIRE node TR K] ELAFAT .

118 ret

/) RBACSAEHE ctrl B alt SEAATTAOFFERD, X B AR mode FRAI LU AL, £ AL BE IR SR 4

- 197 -

7.4 keyboard. s f£f%

—
—
©

[
[\
o

[
)
—_

—_
[\
[\

—
(N}
w

—_
[\
=~

—
Do
(@a]

—_
[\
»

—_
[N
3

—_
[\]
co

—_
[\]
e

—
wW
o

—
w
—

—
wW
Do

—
wW
w

—
W
(IS

—
w
(Sa]

—
w
»

—
w
Q

—
wW
co

—
w
©

—
S
S

—_
S
—

—_
S
[\

—_
S
w

—
A
o

—_
S
ol

—_
S
(o)

—_ [—
NS
@ |

149
150
151
152

—
()]
w

—
1
(IS

—
()]
(@a]

—
(Sx
»

—
(S)]
2

—
(@)
co

—
(@)
el

—
[ep)
(e}

—
(o))
—

—_
o
[\

—
»
w

—
»
(I

—
[e}]
(@]

—
(@3]
>

// 0 FRab it 7 BALK A K2

unctrl: movb $0x04, %al
jmp 1f

unalt: movb $0x10, %al

1: cmpb $0, €0
je 2f
addb %al, %al

2: notb %al
andb %al, mode
ret

Ishift:
orb $0x01, mode
ret

unlshift:
andb $0xfe, mode
ret

rshift:
orb $0x02, mode
ret

unrshift:
andb $0xfd, mode
ret

caps: testb $0x80, mode

jne 1f

xorb $4, leds

xorb $0x40, mode

orb $0x80, mode
/) IXBARI IS 1eds bRk,

SEHEEE AR ctr] B alt .

// B bR mode HHZE ctrl BN LLAFATL (67 2)

// 0x10 JEREAHRE mode /e alt BRI LU AL (7 4)
// 0 bR EAL T CRETRI AL R ctr]l Bialt BEm) ?

[/ A,

/) Fs WRZECR AT AR R AT 8 bR EAL (B 3 BT 5) o
// EATEER AR E mode HR] M R BRI .

// EJE shift % T,

// 7 shift gfn

// A7 shift @R,

// JEAT shift BEFATTF,

// AR R A mode H 7 BT
// WREAE T RS, R

BE mode OGS [FIARAS AL (F7.0)

I, BAL mode R MFRIAR AL (£ 0) -

BCE mode OGS AR AL (A7 1)

A7 mode HX R RIAREAL (7 1) o

S B AL (B FIRE) o
5] (ret) o

// é]]t‘ﬁ’: leds *]‘/qu caps— lock H:Aq:—f’fi (’LL 2)
// T mode ArEH caps 8L T (1 ELRFAL (A7 6) o
// BEE mode AR caps B CUE NARENL (7 7) o

FF IR B A LED 45 7n 28

/) SERFRAL I RIE A S b

/* set leds command */ /% ¥ '& LED 4 */

/] RIEE A A4 Oxed] 0x60 ¥ o
/) ERPRA S AR AN R
// EX ledS *]—\‘/LD7 {’E}Jiﬁiﬁo

/] RIEESH.

// caps BEFATE, NIEAAFRE mode HHRINT AL (67 7) o

// scroll ¥, WIEIH leds h;uEPE’JXﬂ”u (fi7.0)
// WP Teds An&HHT T8 80OC H LED 457

// num BEFE R, WEHEE leds ﬁuﬁPEI’JXTVh (1'¢ Do

// WP Teds An&HHT T8 80C F LED 457

* curosr—key/numeric keypad cursor keys are handled here

set leds:
call kb wait
movb $0xed, %al
outh %al, $0x60
call kb wait
movb leds, %al
outb %al, $0x60
ret

uncaps: andb $0x7f, mode
ret

scroll:
xorb $1, leds
jmp set leds

num: xorb $2, leds
jmp set leds

/%

* checking for numeric keypad etc

*/

/%

s X HLARBR T) B /7 /NS T 1) B

*/

AL A 7N A

- 198 -

7.4 keyboard. s f£f%

167
168
169
170

181

182
183
184
185
186
187

188
189
190
191
192
193
194
195

CUTSOT:
subb $0x47, %al // AR N B LR >=0x4T) KT ?
jb 1f // WS T AR EE, 3R [H]
cmpb $12, %al // WERFARED > 0x53 (0x53 - 0x47= 12), N
ja 1If // AR B 83 (0x53), ANAbFE, R[H],
jne cur? /* check for ctrl-alt—del */ /% ff 21 ctrl-alt—-del */
// MR 12, WA del BECHHE T, WARSEHIMT ctrl
// Falt e mWFENZ T,
testb $0x0c, mode /) A ctrl iz g2
je cur2 /) TG, Bk,
testb $0x30, mode /) A alt g Fg?
jne reboot /B, N B E S s,
cur2: cmpb $0x01, €0 /% e0 forces cursor movement %/ /% e0 BN KRNI IES) */
// e0 FREENL T H?
je cur /)BT, WEkEE AR s b BEAL cur.,
testb $0x02, leds /% not num-lock forces cursor */ /% num—lock F&MAVE */
// TR leds AR num-lock 5 AR & &1 AT .
je cur // IHEA EAL (num 1Y) LED AN52) , MWBHT G A o) ab#E .
testb $0x03, mode /% shift forces cursor %/ /% shift @M YchriZsl) %/
// DKL FRRE mode P shift 3 FHrE,
jne cur // WRAT shift 84T, WHBEHAT AR)b B .
xorl %ebx, %ebx // RT3 (199 17) , HOR N A 47 ASCIT 65
movb num_ table (%eax), %al // Lheax fENZRGIME, BUNNE T FiiPal.
jmp put queue /] LRI GE A
1: ret
// X B A YRR IS)
cur: movb cur table (%eax),%al // BTG53 P AN &SR F A =Dal.
cmpb $79, %al /] BFETRE9, W I, Tl SRS BREE,
ja ok cur /) WIIhEEFFFR I EIRNTAE ™ o
movb $ 7, %ah
ok cur: shll $16, %eax /) ¥ ax PN BT eax BHFT,
movw $0x5b1b, %ax /) TEax WA esc [F4F, 5 eax M A A MBENT.
xorl %ebx, %ebx
jmp put queue /) BRI G A A
#if defined (KBD_FR)
num table:
cascii “789 456 1230.7 // BN EBEXT T ASCIT i .
ftelse
num table:
.ascii 7789 456 1230,”
ftendif
cur_table:
.ascii “HAb DGC YB623” // U7 INeAE b 75) St mlide A H) B B o) I RIS B s 4 3
/%
* this routine handles function keys
*/
// R R AT R .
func:
pushl %eax
pushl %ecx

- 199 -

7.4 keyboard. s f£f%

213 pushl %edx
214 call show stat /) A BREATES IR A EL (kernl/sched. ¢, 37) .
215 popl %edx
216 popl %ecx
217 popl %eax
218 subb $0x3B, %al // DIREEE F1I MIFIHERD 2 0x3B, HULUbR al 2 shggi R 515,
219 jb end func // WRAAFEL /N T 0x3b, MIASALHEE, iR [A],
220 cmpb $9, %al // Dhiekd & F1-F10?
221 jbe ok func [/ a2, NBkEE .
222 subb $18, %al // JEThfEE F11, F12 12
223 cmpb $10, %al // JEVfes F117?
224 jb end func /) A, WIASKREE, RI[A],
225 cmpb $11, %al // Vet F127
226 ja end func /) A, WIAKREE, RI[A],
227 ok _func:
228 cmpl $4, %ecx /% check that there is enough room %/ * FiEr &5 /& 0E55 [A)*/
229 jl end func [/ BN AR, R, MR A,
230 movl func_table(, %eax, 4), %eax // HLIIREBEXS N FHF 751 .
231 xorl %ebx, %ebx
232 Jjmp put_queue /] TN BRI
233 end func:
234 ret
235
236 /*
237 * function keys send Fl:’esc [[A" F2:'esc [[B etc
238 */
/%
* DHEERE RIS, FLEH: “esc [[A, F2HER: "esc [[B &%
*/
239 func_table:
240 . long 0x415b5b1b, 0x425b5b1b, 0x435b5blb, 0x445bbblb
241 . long 0x455b5b1b, 0x465b5b1b, 0x475b5blb, 0x485bbb1b
242 . long 0x495b5b1b, 0x4abbbblb, 0x4b5b5blb, 0x4cbbbblb
243

// FREES-ASCTT 4w g 2
// MRHELE config. h g X425 (FINNISH, US, GERMEN, FRANCH), A S8 [t 4 1 A o s
// FASCIT F45.
244 #if defined (KBD FINNISH)
// CLR 25 A TR B I R i i 25

245 key map:

246 .byte 0,27 // FHES 000, 0x01 X W) ASCTT At

247 .ascii 71234567890+~ // FIHikY 0x02, . .. 0x0c, 0x0d XN ff) ASCIT fi5h, DL R4,
248 .byte 127,9

249 .ascii “qwertyuiop}”

250 .byte 0,13,0

251 cascii “asdfghjkl]| {”

252 .byte 0,0

253 cascii 7’ zxcvbnm, . ="

254 .byte 0,”%,0,32 /% 36-39 %/ /% FH5 0x36-0x39 XF N [#) ASCIT fith s/
255 .fill 16,1,0 /% 3049 %/ /% 4D 0x3A-0x49 XMV] ASCIT fith */
256 .byte ’—,0,0,0,” + /% 4A-4E %/ /% 145D 0x4A-0x4E %V) ASCIT fith */
257 .byte 0,0,0,0,0,0,0 /% 4F-55 %/ /% $14i0 0x4F-0x55 %f MV [ASCIT fith */
258 .byte "<

- 200 -

7.4 keyboard. s f£f%

259 .fill 10,1,0

// shift BRI T I R .
261 shift map:

262 .byte 0, 27
263 cascii TI\7#$%&/ () =2""
264 .byte 127,9
265 .ascii “QWERTYUIOP] ™~
266 _byte 13,0
267 .ascii “ASDFGHJKLA\[”
268 _byte 0,0
269 .ascii “*ZXCVBNM;: ”
270 .byte 0, %, 0, 32 /* 36-39 */
271 .fill 16,1,0 /% 3A-49 */
272 .byte '-,0,0,0,” + /% 4A—4E */
273 .byte 0,0,0,0,0,0,0 /* 4F-55 */
274 .byte '>
275 .fill 10,1,0
276
// alt B[F] N 3T IR .
277 alt map:
278 .byte 0,0
279 cascii “\0@\0$\0\O{[]}\\\0"
280 .byte 0,0
281 .byte 0,0,0,0,0,0,0,0,0,0,0
282 .byte 77, 13,0
283 .byte 0,0,0,0,0,0,0,0,0,0,0
284 .byte 0,0
285 .byte 0,0,0,0,0,0,0,0,0,0,0
286 .byte 0,0,0,0 /% 36-39 */
287 Fill 16,1,0 /% 3A-49 %/
288 .byte 0,0,0,0,0 /% 4A—4F */
289 .byte 0,0,0,0,0,0,0 /* 4F-55 */
290 .byte |
291 Fill 10,1,0
292
293 #elif defined(KBD US)
294
// VLR e BRI F R i 25
295 key map:
296 _byte 0,27
297 .ascii 71234567890-="
298 _byte 127,9
299 .ascii “qwertyuiopl]”
300 _byte 13,0
301 .ascii “asdfghjkl;’”
302 .byte 7,0
303 cascii “\\zxcvbnm, . /”
304 .byte 0,7 %, 0, 32 /% 36-39 %/
305 fill 16,1,0 /% 3A-49 %/
306 byte ’-,0,0,0,” + /% 4A-4E %/
307 .byte 0,0,0,0,0,0,0 /* 4F-55 %/
308 .byte "<

- 201 -

7.4 keyboard. s f£f%

309 .fill 10,1,0
310
311
312 shift _map:
313 .byte 0, 27
314 cascii 71@#$% &x() +”
315 .byte 127,9
316 .ascii “QWERTYUIOP{}”
317 .byte 13,0
318 .ascii “ASDFGHJKL:\””
319 .byte ’7,0
320 .ascii 7| ZXCVBNM<>?”
321 .byte 0, %, 0, 32 /* 36-39 %/
322 .fill 16,1,0 /* 3A-49 */
323 .byte ’-,0,0,0,” + /* 4A-4E */
324 .byte 0,0,0,0,0,0,0 /* 4F-55 %/
325 .byte '>
326 .fill 10,1,0
327
328 alt map:
329 .byte 0,0
330 cascii “\0@\0$\0\O{[]}\\\0"
331 .byte 0,0
332 .byte 0,0,0,0,0,0,0,0,0,0,0
333 .byte 77, 13,0
334 .byte 0,0,0,0,0,0,0,0,0,0,0
335 .byte 0,0
336 .byte 0,0,0,0,0,0,0,0,0,0,0
337 .byte 0,0,0,0 /% 36-39 */
338 .fill 16,1,0 /% 3A-49 %/
339 .byte 0,0,0,0,0 /% 4A-4E */
340 .byte 0,0,0,0,0,0,0 /% 4F-55 %/
341 .byte |
342 .fill 10,1,0
343
344 #elif defined(KBD GR)
345
// CAR s B A A L 2
346 key map:
347 .byte 0, 27
348 .ascii 71234567890\\
349 .byte 127,9
350 .ascii “qwertzuiop@+”
351 .byte 13,0
352 .ascii “asdfghjkl[]™”
353 .byte 0, #
354 .ascii “yxcvbnm, . ="
355 .byte 0, %, 0, 32 /* 36-39 %/
356 .fill 16,1,0 /% 3A-49 %/
357 .byte ’-,0,0,0,” + /% 4A-4E */
358 .byte 0,0,0,0,0,0,0 /% 4F-55 %/
359 .byte "<
360 .fill 10,1,0

- 202 -

7.4 keyboard. s f£f%

Eég shift map:

379 alt map:

.byte 0, 27

cascii I\ #$%&/ O=2""
.byte 127,9

.ascii “QWERTZUIOP*”
.byte 13,0

.ascii “ASDFGHJKL {}~”
.byte 0,

.ascii “YXCVBNM;: ”

396 #telif defined (KBD FR)

397

// BUN RTATE R I T R U R

398 key map:
399
400
401
402
403
404
405
406
407
408

409
410
411
412

.byte 0,27

cascii "&{\” (-} _/@="
.byte 127,9

.ascii “azertyuiop $”
.byte 13,0

.ascii “qsdfghjklm|”
.byte ’ 7,0, 42
.ascii “wxcvbn, ;:!
.byte 0, %, 0, 32
Lfill 16,1,0

V7

.byte ’-,0,0,0,” +
.byte 0,0,0,0,0,0,0
.byte "<

.fill 10,1,0

/%

/%
/%
/%
/%

.byte 0,7 %, 0, 32 /* 36-39
.fill 16,1,0 /% 3A-49
.byte ’-,0,0,0,” + /* 4A-4E
.byte 0,0,0,0,0,0,0 /% 4F-55
.byte ' >

.fill 10,1,0

.byte 0,0

cascii “\0@\0$\0\O{[]1}\\\0”
.byte 0,0

.byte '@,0,0,0,0,0,0,0,0,0,0
.byte 77, 13,0

.byte 0,0,0,0,0,0,0,0,0,0,0
.byte 0,0

.byte 0,0,0,0,0,0,0,0,0,0,0
.byte 0,0,0,0 /* 36-39
Lfill 16,1,0 /% 3A-49
.byte 0,0,0,0,0 /% 4A—4E
.byte 0,0,0,0,0,0,0 /* 4F-55
.byte |

.fill 10,1,0

*/
*/
*/
*/

*/
*/
*/
*/

coin sup gauche, don’t know, [*|mu] */

36-39
3A-49
4A-4E
4F-55

*/
*/
*/
*/

- 203 -

7.4 keyboard. s f£f%

413

414 shift map:

415 .byte 0, 27

416 .ascii 71234567890]+”

417 .byte 127,9

418 .ascii “AZERTYUIOP<>”

419 .byte 13,0

420 .ascii “QSDFGHJKLM%”

421 .byte *7,0,’ #

422 .ascii “WXCVBN?. /\\”

423 .byte 0, %, 0, 32 /* 36-39 %/
424 .fill 16,1,0 /* 3A-49 */
425 .byte ’-,0,0,0,” + /* 4A-4E */
426 .byte 0,0,0,0,0,0,0 /* 4F-55 %/
427 .byte '>

428 .fill 10,1,0

429

430 alt map:

431 .byte 0,0

432 cascii “\OTH{[|\\"@]}”

433 .byte 0,0

434 .byte ’@,0,0,0,0,0,0,0,0,0,0

435 .byte 77, 13,0

436 .byte 0,0,0,0,0,0,0,0,0,0,0

437 .byte 0,0

438 .byte 0,0,0,0,0,0,0,0,0,0,0

439 .byte 0,0,0,0 /% 36-39 %/
440 .fill 16,1,0 /% 3A-49 */
441 .byte 0,0,0,0,0 /% 4A-4E */
442 .byte 0,0,0,0,0,0,0 /% 4F-55 %/
443 .byte |

444 .fill 10,1,0

445

446 #else

447 tterror “KBD-type not defined”

448 #endif

449 /*

450 * do_self handles “normal” keys, ie keys that don’t change meaning
451 * and which have just one character returns

452 */
/%
% do_self T ACEE “i” B, RIS XEARMIFH RGN FARFR P .
*/
453 do_self:
// 454-460 17 FH T ML AR & mode EFE alt_map. shift map B¢ key map MLUFE 2 —.
454 lea alt map, %ebx // alt BEFI 32 R I I me s R L alt map=»ebx.
455 testb $0x20, mode /% alt-gr */ /% f7alt @R T T2 %/
456 jne 1f // g, MR ETEkEE BAR T 1 b
457 lea shift map, %ebx // shift BRI st R Bk shift map=»ebx.
458 testb $0x03, mode // A shift B[R 7?2
459 jne 1f /) A W ETEkEE BbR T 1 Ak
460 lea key map, %ebx // 5 WA F G S 3R key _map.

// B 2 R OR AR K ASCTT 745, B 745, IR B[(8 none) .

- 204 -

7.4 keyboard. s f£f%

461 1: movb (%ebx, %eax), %al /) B HAFAAE IR 5 ME, HOW RN ASCIT ih=»al.,
462 orb %al, %al // R 2 A5 S VK ASCIT A5,
463 je none /) BV OR A ASCIT i5=0), J3R[A],

// Fctrl BEEFE el caps BHUE, FFETFRAAE 2) (0x61-0x7D) YERI Y, WK HE K5 747
// (0x41-0x5D) .

464 testb §0x4c, mode /% ctrl or caps */ /% FSHIBEC % T caps 557 */
465 je of /) B W ETBRE AR 2 4.
466 cmpb § a, %al /) al PHITFRTE a’ .
467 ib of // #alfiC ', WHHtsS 2 4.
468 cmpb §’}, %al [/ al PHITFRTET) .
469 ja of [/ A al 5>}, WEHRS 2 &b,
470 subb $32, %al /) K al Hedie RS 45 (Jk 0x20)
/) #etrl BOIEN, HHTPRE T 7 (0x40-0x5F) Z 8] GERE TR, WK ILH ok ¥ 61 777
// (0x00-0x1F) .
471 2: testb $0x0c, mode /% ctrl ®/ /% ctrl 8EFRINE T THE? */
472 je 3f /] EBAT MRS 3,
473 cmpb $64, %al // K al 5@ (64) P4 HLET (BRI 745 B s Y D .
474 ib 3f /) FEC @, AR 3,
475 cmpb $64+32, %al // K al 5577 (96) FAT ELEE (RN 7455 B e Y D
476 Jjae 3f /) FE>=, WHEFRS 3.
477 subb $64, %al // W al i 0x40,

// B4 Ay 0x00-0x LE 2 JH] A28 il 74 o
[/ T alt BERINALT, WPRE P AT AL 7 BAL .

478 3: testb $0x10, mode /% left alt %/ /% A alt @EFENFEF? */
479 je 4f [/ B, bR 4,
480 orb $0x80, %al /] TR T EAL
// B al RN A
481 4: andl $0xff, %eax // & eax BIE TR ah,
482 xorl %ebx, %ebx // 1% ebx.,
483 call put queue /) BTN A,
484 none: ret
485
486 /*

487 * minus has a routine of it’s own, as a 'EOh’ before
488 * the scan code for minus means that the numeric keypad
489 * slash was pushed.
490 */
/%
* PCTATE H G R, BN ERCT S L T 0xe0
* RGN TR /MERL BRI

*/
491 minus: cmpb $1, e0 // €0 bR EN T ?
492 jne do self J/ B, WA do self XIS kT Y A #H
493 movl §/, %eax /) WA/ B iS - al.
494 xorl %ebx, %ebx
495 jmp put queue /] BTN A,
196
497 /*

498 * This table decides which routine to call when a scan—code has been
499 * gotten. Most routines just call do_self, or none, depending if
500 * they are make or break.
501 */
/% NIRRT Bk 2 . AR AR S U 1 A U F AR Y 4 R A A B R

- 205 -

7.4 keyboard. s f£f%

* KZEHH B TREFE 2 do self, B & none, XAk T 2 3% 4 (make) b2 B (break) .

*/

502 key table:

(@)
—
w

(@3]
—
(IS

(@a]
—
(@a]

(@)
—
»

o
—
-~

(@)
—
co

(@)
—
el

(o]
Do
o

521

o1 |o1 |On
DO DO DO
oD

(9]
Do
»

. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long
. long

none, do_self, do_self, do_self
do_self, do_self, do_self, do_self
do_self, do_self,do_self, do_self
do_self, do_self,do_self, do_self
do_self, do self, do_self, do self
do_self, do self, do_self, do self
do_self, do self, do_self, do self
do_self, ctrl, do_self, do_self
do_self, do self, do_self, do self
do_self, do self, do_self, do self
do_self, do self, Ishift, do_self
do_self, do self, do_self, do self
do_self, do self, do_self, do self
do_self, minus, rshift, do_self
alt, do self, caps, func

func, func, func, func

func, func, func, func

func, num, scroll, cursor

cursor, cursor, do_self, cursor
cursor, cursor, do_self, cursor
Cursor, cursor, cursor, cursor
none, none, do_self, func

func, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, none, none, none

none, unctrl, none, none

none, none, none, none

none, none, none, none

none, none, unlshift, none

none, none, none, none

none, none, none, none

none, none, unrshift, none

unalt, none, uncaps, none

none, none, none, none

none, none, none, none

none, none, none, none

- 206 -

/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%

00-03
04-07
08-0B
0C-OF
10-13
14-17
18-1B
1C-1F
20-23
24-27
28-2B
2C-2F
30-33

34-37 .

38-3B
3C-3F
40-43
44-47
48-4B
4C-4F
50-53
54-57
58-5B
5C-5F
60-63
64-67
68-6B
6C—6F
70-73
T4=-T7
78-7B
7C-TF
80-83
84-87
88-8B
8C-8F
90-93
94-97
98-9B
9C-9F
AO-A3
A4-AT
A8-AB
AC-AF
BO-B3
B4-B7
B8-BB
BC-BF
C0-C3
C4-C7

sO esc 1 2 %/
3456 %/
7890 %/

+ 7 bs tab %/
qwer */
tyui*/

opl} ~x/

enter ctrl a s */
dfgh*/

k1| %/

{ para 1shift , */
z xcv ¥

bnm, %/

- rshift * %/
alt sp caps f1 */
2 3 f4 f5 %/

6 f7 £8 f9 */

f10 num scr home */
up pgup — left */
n5 right + end */
dn pgdn ins del */
sysreq ? < f11 */
12 2 2 2 */

*/

*/

*/

*/

*/

*/

*/

*/

2?2 %/

br br br */

br br br */

br br br */

br br br */

br br br */

br br br */

br br br */
unctrl br br */
br br br */

br br br */

br unlshift br */
br br br */

br br br */

br br unrshift br */
unalt br uncaps br */
br br br br */

br br br br */

br br br br */

D 0 0 0 0 D D D 0
D 0 0 0 D 0 0 D 0 D

N N I B B e B)

cCc oo ooTggoooTgoo o
T O s T T T T T

7.4 keyboard. s f£f%

553 . long none, none, none, none /* C8—CB br br br br */
554 . long none, none, none, none /* CC-CF br br br br %/
555 . long none, none, none, none /% DO-D3 br br br br *x/
556 . long none, none, none, none /* D4-D7 br br br br *x/
557 . long none, none, none, none /% D8-DB br ? ? ? */
558 . long none, none, none, none /% DC-DF ? ? 2 ? %/
559 . long none, none, none, none /% EO-E3 e0 el ? ? %/
560 . long none, none, none, none /% B4-E7 ? 2 ?2 ? %/
561 . long none, none, none, none /% E8-EB ? ? ? ? */
562 . long none, none, none, none /% EC-EF ?2 2 ?2 ? %/
563 . long none, none, none, none /% FO-F3 ?2 2 ?2 ? %/
564 . long none, none, none, none /% F4-F7 ? ? ?2 ? %/
565 . long none, none, none, none /% F8-FB ? ? ? ? %/
566 . long none, none, none, none /% FC-FF ? 2 ?2 ? %/
567

568 /*

569 * kb _wait waits for the keyboard controller buffer to empty
570 * there is no timeout — if the buffer doesn’ t empty, we hang
571 */

/%

* AT kb wait H TS Ari B 2R 0t . ANEAEBI AL - iR

* SRR AT, R ke KA S Ay (B -

*/
572 kb_wait:
573 pushl %eax
574 1: inb $0x64, %al /] PRI
575 testb $0x02, %al // AN G s A (T 0) .
576 jne 1b /] A, MPEAEIA S .
b77 popl %eax
578 ret
579 /*

580 * This routine reboots the machine by asking the keyboard
b81 * controller to pulse the reset-line low.

582 */
/%
* LR T BB A, AL ke, A RS R ALE) (reboot) .
*/
583 reboot:
584 call kb wait /) SRR R R A AN D e
585 movw $0x1234, 0x472 /% don’ t do memory check */
586 movb $0xfc, %al /* pulse reset and A20 low */
587 outb %al, $0x64 // T FRGE AT A20 Lkt Bk
588 die: jmp die // BEML.
743 HEEFER
7.43.1 AT #BZEOHRE

TR PR R 8 L intel 8042 £y BNy, H@ErRER, WREFR. L
i i P2 0 LB H K. A7 0(P20 SN +52 8L CPU IEAIERAE, 7 1 (P21 51D 42
A20 (552 TTIR 545 . izdaitiag A2 0 O 1 RHtTie GRIED T A20 {554, b 0 WZELE A20 155
. ZIGIFAIIEF —FHR A20 55 &I B] .

- 207 -

7.4 keyboard. s f£f%

— i N3 1 P1

8 {i;. CPU P10 NC
B o

P12 NC
=
P14l FZEM RAM
P15\ 1R 226
_ P16le— i g KA
(0x60) iy th 22 |<_ P17le—HRLBIE
o — Hr i 1 P2
ﬁ_g —>| OCOMAZ |5 STl R
i » R < A
Lﬁ P21l §A20 Lkl

>| (0x64) i Al |> <
Ox60 REFEE [PoO| g i A1 I B (XL 1)
P27 > H i EcHE sl

TN
=2 g

Y
—

A

Wit e 1

E7.3 EEEFIE 804X BETEE

I BCLE B 28 11 10 i I YE Hl & 0x60-0x6f, {H SRR I 1IBM CP/AT 1 H 111 4 0x60 Al 0x64 P/~ I
itk (Ox61. 0x62 Fl1 0x63 FT-5 XT A& H) W R, b5 sty SR S B & SUANE, R R
AT 4 FPOARR A . WP BERLAE RIRS AT g, W00 SO B R IPPIR S A7 8% BTN Ge b2 A H 22 ph 4%

7.1 BREITHIER 804X im0

W | A i
0x60 | i BOPE i 0 B | A 8 A A AR B R s Ak AL () F S
ZIhes MMM, — I ERETAAAAL 0 = 1, Sy = Erh
IRQL. i NOZAAEIR A v 467 0 = 1 I 4152,
0x60 | 5 LRGeS FH T s A R 15 A S a0 fo 2 8, slm s R 2 S S 5

BEAAINE 10 24, WRMGUH . T8 #N 1ZER A 1
fi7 1=0 N A5,
0x61 | /5 1% 11 0x61 S 8255A iyt 1 B [Fdhil, J&%lx) il FH /5 7% 8255A
1) PC bRt i g AT O A A0 B o % VA T3 e 0 i
FERDA N o TR e T AR R, RS ST T SOV A
P B A R £t A -
7 7=1 25 R, =0 VPR,
A7 6=0 AL BEAL IR KA, DRI B AN e R IEATA ¥
7 5-0 XEEA SEERTEOC, ST AT gn I T (PP,
0x64 | RETAr4 A 8 AL, AT B U A
R 7=1 K F R AR A 7 AR A 0 i 5
£ 6=1 BB R (AL ALIE AR IRQL);
P 5=1 FIEFBI (AL TC I) 5
f7 4=1 BREEREE VB BE AR 1L [2202=0 1]
£ 3=1 5 NHI NG s 5 2 Ay A (i i 11 0x64);
=0 HNFIAG M I 2 S8 (a1 0x60);
2 RGEERE: 0= EHPsiEEN,; 1= Ak,
f7 1=1 H N ZE0h 233 (0x60/64 114545 8042 (K5 H5);
A7 0=1 %yt 22 b 235 (Bt 11 060 4745 RS Bd)
LIPS RS S m L. 25, SR 0x60 BN . A
P By AT 12 4, WERJE .

0x64

dm

- 208 -

7.4 keyboard. s f£f%

7TA32BEHES

RYAE G 1 0X60 5N 1747, e R IEHEA A 4. SRERA R A 25 20ms Py ST AR, BT[]
BN, GHRmAEETRER S8 (WERZu). yIRIL TR, FE, WEREA 5
TR, AT iy A ¥ Rl%E—AS Oxfa Wi WAS(ACK) .

FT1.2 BEGS—ER

i B ¥ | Yhiig
Oxed 11 BRI . B 1ITR, 0 KH. S8
fir. 7-3 PR B 424 0

i 2 = caps-lock #;
{7 1 = num-lock %;
{7 0 = scroll-lock % .

Oxee k Wl . BN [E]3% Oxees
Oxef RE A o
0xf0 fa BB E RN . SHT T

0x00 - JEFEMATH 4L,

0x01 - JEFFIHAE4E 1(H T PCs, PS/2 30 %%);
0x02 - LA S 201 T AT, PS/2, SEEE1H):
0x03 - HEFF AL 3,

0xfl PR AH

0xf2 B BRI AR IR (I 2 A7) . AT BEARLIR B[AT Oxfa.

0xf3 H W BT 34 S R IR () A IR I i) . S H TS SOA
7.7 PREE N 05
£ 6-5 IEM{E: 4 C=f7 6-5, WA A: LEREH=(1+C)*250ms;
f7 4-0 FARISIELL IR IH R, 4 B=AL 4-3; A=f1 2-0, WA
T =1/((8+A)*2"B*0.00417).
SR 0x2c,

0xf4 o T B

0xf5 B IR S

0xf6 T WEER NS

0xf7-0xfd 1R RN .

Oxfe o HREHI . RSB REOR A, R A2

Oxff o PATHAE BT EAE, R NEEARGRIENNA(BAT). #RAE RN
1. SRR A A 5 S B R % Oxfa
2. BRI A AR A, I B R R £ A e H T
3. BESLIFURIT BAT #4E;
4, FIERSEG WBEEL A 1% Oxaa; 15)&% Oxfd JF45 R34 .

7433 BEETHBHS

W

RGN (5 1 0x64) 5N 1741, RIUAE B Hla fr . Wil — 248 SH0EEdS 0x60
i A 1 o

RT3 BEEHIRGS R

0x20 k g A S R G A Y, R I 0x60 AR SR
0x21-0x3f | & DR T AT 5 PR AR E AP & A A RAM i 2o
0x60-0x7f | 47 GRS GO T SN CBRIAME N 0x5d)

77 R M 05
7. 6 IBM PC Fe AR (AR A 56, B 408 R G F1IEIE, 5775 PC WiTTFD);
£ 5 PCHEA RSB T 2T AL K s AN R R G D) ;

- 209 -

7.4 keyboard. s f£f%

A7 4 ZE I EEAS AR CREBEAS I Bl oA (R P

7 3 A 1L Bk (override), %A e AN RAE H 5
B2 REGubrik; 1Rl TAEEM;

71 fREE N 05

0 SV A A B A

Oxaa G WG s AR e IhiR M) 0x55; “RIMGR [Oxfe.
Oxab " WG AR IR . R [A) Y
0x00 TGkt
Ox01 BB E AR AR A A G, (RRGIE);
0x02 FEAF I ek Ay s
0x03 At £ WA
0x04 Bt ALEA L N =5
Oxac " WA . 804X 1] 16 7717 RAM. FarHh 1. N\ FUIRESIR G 245 R4
Oxad " AR A CGRE A 7L 4=1),
Oxae G PV TAE (A a2 10 4=0) .
0xc0 R L 804x (M NI I PL, FIAE 0x60 fLiszHY;
0xdo PR i 804x [k s 11 P2, FiAE 0x60 HEiszHN;
Oxd1 f 5 804x [y Hist 11 P2, J5t IBM PC i FH % H i IO 2 5] A20 1], ¥
B A O(RG AL NAZ A AL
0xe0 " B TO A T [N3k 2 b 2e it RGE L.
A7 1B E s A7 O BB B
Oxed H 2 LED (eiRk&. B LIF)E, 0%M. S50

£ 7-3 fRFE 420 0;

i7. 2 = caps-lock #;

£7. 1 = num-lock %

£i7. 0 = scroll-lock %

0xf0-Oxff G IERK R Ry o %A AP s g H o 1 P20-23 £k, 2 WAL IA
TR AR f Uikt (6 TRD), BUENZALN 0. thR1%
AL 4 Aoyl fik b it . wln, FESEALRSE, WFER WS
fir 4 Oxfe(P20 i) BN H] .

7.4.3.4 BE AL

PC HUR M A A . B AR MR — MBS, RMARIA M EFF. I H PC XT
B AT HUBSE A B 22 MR . S P (R b I 1) R 45 R 1 1A S R I (R i i R,
BT B IR IR AL R by B (make) F1 50, T 12BN TT I A 326 1R JUIR A WBr T (break) $ 1404

B FIRENMEEE NS TR R 7 AL (67 6-0) TARN FIFIHED . ZEEAT (F7 7) Fon e HEin
TR TR . £ 7=0 FoRRIKH g RIS, A7 7=1 LoRBRA TS . Bldn, 4S5 ANIHE ESC
B R, MR R MFIRDE 2 1 (1 /2 ESC BRI), iz BRI, =42 1+0x80=129 FHii4.

X PC. PCIXT IfbrifE 83 BEEEAE, Bl S5ES CEEMMIER) MM, JFH 1 7 RR.
Bihn “A” G, BEATE SR 30, BAIMMD SR E OxLe. 1M T ITAD L S REm A b | 0x80, EJ 0x9e.
X AT WL 84/101/102 7 e 4, 5 PCIXT FrfE B X K .

XEFRE PR R, RO LA AN RREEREL NI, R A AR IR H AR A 1 fs
Bt — A YRR R TS Oxe0, TUAE R A “HRlTT HeREgs . Lhin, T PCIXT bRt
JEIA IR ctrl (S S 29, MATIAI AT RER T B ctrl WLRAT — AN RS 29, XA
FIFEE ST alty 77k,

TN, EE WA B AEE R R . PrtScn #EA1 Pause/Break . 4% PrtScn HU 4 [m) SAL KT
FEP RIE*2*NNY JRT-1F, 42(0x2a)F1 55(0x37), FITLASZFR 75 41K & 0xe0, Ox2a, Oxe0, 0x37. {HAE
B P AR FURIE YT R 037 MEEAA TN, NCEEH ALY RN I 0x80 (1Y (0xe0, Oxaa,

- 210 -

7.5 console. ¢ F&/¥

0xe0, 0xb7). 4 prtscn F4% FHf, s shift o ctrl #:BI% N T, WK 0xe0, 0x37, F HAEFATFIHY
K% 0xe0, 0xb7).

XF Pause/Break . WIRARESL NIz A RN R T RshlsE, WK Ty s 70, midE e
T R T T) Oxel, Oxld, Ox45, Oxel, 0x9d, Oxc5. Vi NIEAL =4 F & s, T
BRI AR

PRI, WTLUXFERE R ANAL T $140S Oxe0 R IEA — N FATERBEILS, it Oxel W)
I ERBEAT 2 D74

Xt AT SRS, 5 PCIXT AT AR 484% RN, IS N i g0k iy, (H SRR TT
I, AGRAEPIA AT, B OxFO, 55 2 DB AR R B H RS . BLAEBEAE Vv A 8049 1104 AT
SEAL AR BEES, A T 1R R AR AT S A R e il 1 25X PCIXT ARt g4 41t .

AT BERAT =BT R A . —BiUZFRATT TS0 14 (83 B WS, 13 (AT 2 42 (1) Oxe0 fi),
— B RMUF), A M AN B a— Rk i)8 U e shift, caps, 2 ctrl FiZE
alt BEFIFATF AL 1% o B BRI TR IS AL I 4 2, ml DA i 2 T o

W FHIHESAE 1A 2, FRRRAY Oxe0 A1 Oxel. ‘UATH T HAMIFI DhRER S, thln: A3l ctrl £ &
& Ox1d(HF T PCIXT), WA bk & Oxe0, Ox1d. XK T 5 PCIXT FEFPFEZ. 5 e — 18
Oxel [P s R I I Fa IR, S AR B0 [R] IS A — > Oxe0 [FIRRAR .

1.4 XT BEFAMEER
1 2 3 4 5 6 7 8 9 - =\
29 02 03 04 05 06 07 08 09 OA OB OC OD 2B

TAB |Q W E R T Y U T o P []
OF |10 11 12 13 14 15 16 17 18 19 1A 1B

CNTL (A S D F G H J K L ; ° |ENTER

1D 1IE 1F 20 21 22 23 24 25 26 27 28 |1C
LSHFT |Z X C V B N M, o/ RSHFT
2A 2C 2D 2E 2F 30 31 32 33 34 35 |36

ALT Space CAPLOCK
1D 39 3A

7.5 console.c 125

7.5.1 ThRetEIAR
ASCAFSIZEL T $ 40 5 2 s R (P34
7.5.2 KSR
BIF% 7.4 linux/kernel/chr drv/console.c &%

/¥

* linux/kernel/console. c

*

* (C) 1991 Linus Torvalds
*/

|00 | [Oy |1 W [DO [
*

*

console. ¢

- 211 -

7.5 console. ¢ F&/¥

*

* This module implements the console io functions

* ’void con_init(void)’

* ’void con write(struct tty queue * queue)’

* Hopefully this will be a rather complete VI102 implementation.
*

* Beeping thanks to John T Kohl.

*/
/%

* AL PSR 6 Y N S T e
* ’void con_init(void)’
* "void con write(struct tty queue * queue)’
* Ay BN EH SRR VT102 5B,
*
*

e e e e e e
[yt o g fang =S

Z

J& John T Kohl SEHA TN HR

—
-

/¥

* NOTE!!! We sometimes disable and enable interrupts for a short while
#* (to put a word in video I0), but this will work even for keyboard

* interrupts. We know interrupts aren’t enabled when getting a keyboard
* Interrupt, as we use trap—gates. Hopefully all is well.

*/
/%

YRR FRATAE I AR AR A SRV e W (TR — AN (word) JECEIRAA 10) , R R
N TR P WX A T DA CAER . RO FRATME I BEBE T, B CLERAT AT 7 35— A
* FEA WIS RV . A UIIER .

*/

|5 I |

[\
o

Do
—_

|53 13 |

25 /#*
26 * Code to check for different video-cards mostly by Galen Hunt,
27 #* <g-hunt@ee. utah. edu>
28 #/
/%

* RIS ALE s RIS K 2 & Galen Hunt 4a'5 (1,

* <{g—hunt@ee. utah. edu>

*/
29

=

#include <linux/sched.h> // VRAEEFETFLICHE, & X TALSS 450 task structs HIZRITSS 0 FO%dE,
// A YA I RIA T S B0 B SR N 2 G bR B TR R .

31 #include <linux/tty.h> /)ttty SkE, X THEIK tty io, HATHEE T HRISE. HH.
32 #tinclude <asm/io.h> // io SKICHF. w8 SCREAF o VN /i I T)
33 #include <asm/system.h> // RGN0, @ T W E S8 SRR/ W R NI SR 2
34
35 /%
36 * These are set up by the setup-routine at boot—time:
37T #/
/%
* IXERRCE TR setup E51 TSI RGN K E NS4
*/
38
// Z WA boot/setup. s IR, Hl setup P IHUH R ISR .
39 #define ORIG X (* (unsigned char *)0x90000) // Jehs¥l 5.

- 212 -

7.5 console. ¢ F&/¥

#tdefine ORIG Y (¢ (unsigned char *)0x90001) // AT S
#tdefine ORIG VIDEO PAGE (k(unsigned short *)0x90004) // W s,
#tdefine ORIG VIDEO MODE ((x(unsigned short *)0x90006) & 0xff) // Wi,
43 #define ORIG VIDEO COLS (((x(unsigned short *)0x90006) & Oxff00) >> 8) // FFFAI%L,
#define ORIG VIDEO LINES (25) /] BIRATHL
45 #define ORIG VIDEO EGA AX (* (unsigned short *)0x90008) // [?2?]
46 #define ORIG_VIDEO EGA BX (* (unsigned short *)0x9000a) // s WAE RN AL
#tdefine ORIG VIDEO EGA CX (k(unsigned short *)0x9000c) // S ~FEHESH
/) B SUR AR B/ R B IR B 5 2
#tdefine VIDEO TYPE MDA 0x10 /* Monochrome Text Display */ /% BOUAR x/
#define VIDEO TYPE CGA 0x11 /% CGA Display #/ /% CGA BIR#y */
ttdefine VIDEO TYPE EGAM 0x20 /% EGA/VGA in Monochrome Mode */ /% EGA/VGA H.{fix/
#tdefine VIDEO TYPE EGAC 0x21 /% EGA/VGA in Color Mode %/ /% EGA/VGA ¥ ftx/
#define NPAR 16
extern void keyboard interrupt (void); // BRI AL TR AL (keyboard. S) .
static unsigned char video type; /% Type of display being used +*/
/% AT BRI */
static unsigned long video num columns; /% Number of text columns */
/% BEFRESUARYIEL */
static unsigned long video size row; /* Bytes per row */
/% BRATAE I ETE +/
static unsigned long video num lines; /* Number of test lines */
/% BEFRESUARATEL */
static unsigned char video page; /% Initial video page */
/% WIGR R R DU */
static unsigned long video mem start; /% Start of video RAM */
/% WoR WA HAE */
static unsigned long video mem end; /* End of video RAM (sort of) #/
/% IR ARG CRuip) Hidik +/
static unsigned short video port reg; /% Video register select port */
/* SRR G| TR A AR %/
static unsigned short video port val; /% Video register value port %/
/% RIS P A A] x/
static unsigned short video erase char; /% Char+Attrib to erase with */
/% BERR AT IR S AT (0x0720) */
// VAR IR e H T B B AR
static unsigned long origin; /% Used for EGA/VGA fast scroll */// scr start,
/% T EGA/VGA PR =/ // WHEASM N Ak
static unsigned long scr end; /% Used for EGA/VGA fast scroll */
/% FHF EGA/VGA PR BE */ // WHEAR Uity N A7 Huhik
static unsigned long pos; [/ HHTEER N R WA B
static unsigned long x,y; /] AHDGARALE
static unsigned long top, bottom; /] BENNTIATAT S IRATAT 5 -
// state FITHrBIALBE ESC % SUFHIH B 24 8520 B . npar, par [1475 ESC 541 #Y 8] A BE 24
static unsigned long state=0; // ANST #: SUF-FF R4 A FOIR A
static unsigned long npar, par[NPAR): // ANSI # SLA0 I 912 B B S 5080
static unsigned long ques=0;
static unsigned char attr=0x07; /] TR EYE (RIEAT) .

- 213 -

7.5 console. ¢ F&/¥

78

79 static void sysbeep(void) ; /] BRGIEN R
80

8L /*

82 #* this Is what the terminal answers to a ESC-Z or csiOc
83 % query (= vtl00 response).

84 #/
/%
* TR AR ESC-Z 5% esiOc i 3R (1R (=vt 100 ML) .
*/

// csi — ¥EHIFEH 5] 28 (Control Sequence Introducer) .
85 #define RESPONSE “033[21;2¢”

87 /% NOTE! gotoxy thinks x==video num columns is ok */
/¥ ! gotoxy BREAN x==video num columns, XiZIEHiM =/
/1] BRERCHR A B
//?ﬁ:MMX*%ﬁ%EW%:mmY*%ﬁ%Eﬁ%o
[/ DGR B AR ' x, y, HABIE pos $& MDGHRE TR N AE IR A B

88 static inline void gotoxy(unsigned int new x, unsigned int new_y)

89 {
/) AERE N CART 5 SR ai s, AT S s i RAT L, AR H .
90 if (new x > video num columns || new y >= video num lines)
91 return;
/) HORAED AR R DGR B N A W N AF AL E AR & pos
92 X=new_Xx;
93 y=new_y;
94 pos=origin + y*video size row + (x<<1);
95}
96

/) BRI RN L

97 static inline void set origin(void)

98 {

99 cli(;
[/ R R R T A v12, RE B AERFEGHEE T A 9 6L, KR AEE)
// 84, FERLL 2 FARERR L 1 75 o TR Bon WAFERER

100 outb p(12, video port reg):
101 outb p(0xff&((origin-video mem start)>>9), video port val);

o [/ PIERE BRI HIEE TS 13, ARG S AG RGBT A RE) 1 ALRRERLL 2,
102 outb p(13, video port reg):

103 outb p(0xff&((origin-video mem start)>>1), video port val);
104 stiQ;

105 }

106

) BB AT RREE DR FBED .
/) BB D N AT S WARF AR S UL .
107 static void scrup(void)

108 {

// W T REAE EGA, NP AT LT #AE .
109 if (video type == VIDEO TYPE EGAC || video type == VIDEO TYPE EGAM)
110 {

/) MR LT top=0, BaHIEIT bottom=video num lines=25, WK /RIEHE 0] FH5).
if (ltop & bottom == video num lines) {
// VRS BRSNS AR AL B FR BT origin 4 Inl RS AT BEFRE RN N A, (R I i

1

—_

- 214 -

7.5 console. ¢ F&/¥

/7 ATCHRS L AL LR B R AT R 7 A R ser_end HOALEL

112 origin += video size row;
113 pos += video size row;
114 scr end += video size row;

/) AR B A i fm — A B PR TN N B R WAEFREE scr_end B T SERR BoR N AE IR B, TUDRE

/! RENBENGFEIEZ 32 BN IAA E video mem start &b, IF7EHILHIHAT FHENSH 5.
if (scr end > video mem end) {

// %0 - eax (HEBRFTFHENE) s %1 - ecx (CB /RS FAFHATE-) Frxt NI 2R/ 40/ 2, EUKFEE)) ;

// %2 - edi (WoRWAERRIAITE video mem_start); %3 — esi (Bf4: ARV N AFIRIGALE origin) o

// BEhrin: ledi]l=dlesil, Bahecx MEF

—
—
(@]

116 _asm_ (“cldin|t” // TEIT AL

117 “rep\nlt” [/ SRR, BB N AR
118 “movslin|t” // AN B BIR WA AR AL

119 “movl video num columns, %1\n\t” // ecx=1 {TFFFH.
120 “rep\nlt” [/ AT EIAN TG R

121 “stosw”

122 ::7a” (video erase char),

123 “c” ((video num lines—1)%*video num columns>>1),
124 ’D” (video mem start),

125 ”S” (origin)

12 on” dl” si)

// K Bt N AT R B B JE S O fﬁ%ﬁﬁ%%ﬁﬁ)}:’?%ﬁ@Wﬁﬁ‘]i@ﬁﬁ?‘éﬁ\ R TR B T o A i
// RN AEFREE ser_end.

127 scr_end —= origin-video mem start;
128 pos —= origin-video mem start;
129 origin = video mem start;

130 } else {

// ISR S) B R w0 N N AEFE BT ser_end B BoR WAEHI A 3 video mem end, W) HFEAE
/) AT LN (B R
// %0 — eax (FEERFZFFHENE) s %1 - ecx (RIRZFFATED 5 %2 — edi (BEHEATNY NAF 55— 1T TFERAL) 5

131 _asm_ (“eldin|t” // G T AL
132 “rep\nlt” /) EEEAE, fEHHIAT B
133 “stosw” /] ENEEBRTRF (P TEAE) o
134 ::7a” (video erase char),
135 “c” (video num columns),
136 “D” (scr_end-video size row)
137 ex” i)
138 }
[/) BRI S NGB) B A Y () AR AR AR A B A
139 set_origin();

[/ TBWRRAEIESE 5. IR R INFREAT top FFERIWATE AT IR RS 14T (MER 147) « BERT BB
/] B BE%E TR AT top B BEHEAR v BT A AT XN) Wos AR S) B 14T, JRERT B BLIAT IE N
/] R

// %0-eax FERRTFFF+HENE) ;. %l-ecx (top 17 F 1 ATIFUE B BEHERAT AT I3 B 10 N A2 K 750

// %2-edi (top AT AL NAFEALE) ;. %3—esi (top+] AT T ALK N AEAT) -

140 } else {

141 _asm_ (“eld|n|t” // G TT AL

142 “rep\n\t” // TEEEAE, 4 top+l F bottom 4T
143 “movsI\n\t” // BTN N AFERFE B top AT TR AL
144 “movl video num columns, %%ecx\n\t” // ecx = 1475540,
145 “rep\n|t” /) AEHAT BN R T .

146 “stosw”

147 11 7a” (video erase char),

- 215 -

7.5 console. ¢ F&/¥

ol

148 ¢” ((bottom—top—1)*video num columns>>1),
149 “D” (origintvideo size rowktop),

150 ’S” (origintvideo size row(top+1))

@ : //CX //’ Y d]- //’ //SJ- /3 ;

152 }

153 }

[/ R RERANE EGA G2 MDA) , JUFAAT R A Bt R4 MDA 7<% 2 A 3 M B8 H s v
[/ BN OL, RIS BZhBIEAREE, T LUK BLANKE e A AT 9 A7 Y SR A A O DL AR B . A EE
// Jiik5 BGA ARRERR B B DL oE 4.

154 else /* Not EGA/VGA #/

155 {

156 ~asm_ ("cld\n\t”

157 “rep\n\t”

158 “movsI\n\t”

159 “movl video num columns, %%ecx\n\t”
160 “rep\n\t”

161 “stosw”

162 ::"a” (video erase char),

163 “c” ((bottom—top—1)*video num columns>>1),
164 “D” (origint+video size rowktop),
165 ’S” (origintvideo size rowk(top+1))
166 ex” i’ Pei)

167 }

168 }

169

[/ A &S —1T (R DR B .
[/ KB O W BT, RN NA N RSN 14T, TEREBEIITGEATR B I —ET. 0L
/) FEFPHIR G UM . B T5EY scrup O AL, JURSH T IER S B N A7 50 AN o B ES 0 78 26 A 17
// B, SR AR AT IR, RIS 2 AT W — PR T as =
170 static void scrdown(void)
{
// IR B oREEE BGA, THAT T AIHRAE.
[/ [22UF it Rl else HRAESE A —HREWT U A 4GB B2 5 AL EEG 2 X 54T 55 V) A7 062]
172 if (video type == VIDEO TYPE EGAC || video type == VIDEO TYPE EGAM)
173 {
// %0—eax (FERRFAFHEYE) 5 %l-ecx (top 1T HUA N BF # ARAT-1 AT AT ZUITRN NI N AE K240
// %2—edi (BEFeA NG — MK TALE) s %3-esi (BRFBIECRE 2 178G — MK FALE) «
// Bhrn: lesi]l=dledi], Bahecx MEF

—_
—_

174 ~asm_ (“stdln\t” // BT
175 “rep\n\t” /) BEEEAE, W NS top /T3] bottom-1 4T
176 “movsl\n\t” /] RS LR A ES AR
177 “addl $2, ¥%edi\n\t” /* %edi has been decremented by 4 #/
/% %edi TV&Uk 4, PRIAIETT I BHEEBR AT/
178 “movl video num columns, %%ecx\n\t” // & ecx=1 {TFRH.
179 “rep\n\t” /] K BRFRPEN EJTRAT T
180 “stosw”
181 ::"a” (video erase char),
182 “c” ((bottom-top—1)*video num columns>>1),
183 “D” (origintvideo size rowkbottom—4),
184 ”S” (origintvideo size row*(bottom-1)-4)
185 ax” “ex” “di” "si”)
186 }

[/ WERANE EGA SR8, UBRAT AR A CH AT Bfise 4+ o

- 216 -

7.5 console. ¢ F&/¥

187 else /* Not EGA/VGA */

188 {

189 _asm__ (“std|n\t”

190 “rep\n\t”

191 “movsl\n\t”

192 “addl $2, %%edi\n\t” /% %edi has been decremented by 4 */
193 “movl video num columns, %%ecx\n\t”

194 “rep\n\t”

195 “stosw”

196 ::"a” (video erase char),

197 “c” ((bottom-top—1)*video num columns>>1),
198 “D” (origin+video size rowkbottom—4),

199 ”S” (origint+video size row*(bottom—1)-4)
200 ax” Tex” 7di” 7si”)

201 }

202 }

203

/1)) kAL E N 47 (1f - line feed #1T).

204 static void 1f(void)

205 {
/) AEROEHR A AAEERIECR 2 472)5, W ERABSOEAR i AR y++, FFRBOUARR Y Eos WAL &
// pos (LR —AT T4F B M N A7 L)

206 if (y+1<bottom) f{
207 vt
208 pos += video size row;
209 return;
210 }
[/ MR B AR AT
211 scrup () ;
212)
213

//// ks ER—4T (ri - reverse line feed IaJ#4T) .

214 static void ri(void)

215 {
[/ WRSARATER 147 E, W EEZE SO SR T bR y—, FFIREOCARN N 2R AP pos, T2
[/ Bt b AT R N Y B A B T A

216 if (y>top) |
217 i
218 pos —= video_size row;
219 return;
220)
/] EWFTEAR BN A AT,
221 scrdown () ;
222)
223

/) SRRREIFIES 150 51) £ (er — carriage return [FI%E) .

224 static void cr(void)

225 {
[/ JERRFAERIZ) %2 B0 ZU B GAR BT TEZRT [N A7 K
226 pos —= x<<1;
227 x=0;
228 }
229

- 217 -

7.5 console. ¢ F&/¥

/) BRI — 77 (A0 (del - delete MHIER)
230 static void del (void)
231 {
/) AERICHR AT AEAE 0 71, WPREOGEROS B N AF-AL B AR B pos JEIR 2 7745 O s b —A
/) BRI ERR A E AR 1, N ChR BT R B T HEER .
if) |
pos —= 2;

¥, A

<«
=

[\
[\

3

DO DO
wW |
E= (9]

X
*(unsigned short *)pos = video erase char;

[N}
w
(Sa]

[\
w
»
—

N}
w
s

}

[\
w
co

/11 MR Bt b5 YeAR A EAH IR 4y, LA 3 AL, csi — #8817 51515484 (Control Sequence
// Introducer) .
// ANST #% SLJ¥%: "ESC [s) (s = 0 BERICHRBIpEAERun: 1 MIBRBERETT IR BIEhRAL; 2 BEBEMIER) .
// ¥ par — XN L s.

239 static void csi_J(int par)

240 {
241 long count asm_ (“cx?); /] BN A AR AR
242 long start asm (7di”);
243
/T RS = 0 73 ol B T I B A AT R T 4R Y R A AR AL
244 switch (par) {
245 case 0: /* erase from cursor to end of display */ /* PEIGYChrE A */
246 count = (scr_end-pos) >>1;
247 start = pos;
248 break;
249 case 1: /# erase from start to cursor */ /* WERMBEREIFURBEHRAE I FAF */
250 count = (pos—origin)>>1;
251 start = origin;
252 break;
253 case 2: /* erase whole display */ /% MBR#EAN BT LRFAF */
254 count = video num columns * video num lines;
255 start = origin;
256 break;
257 default:
258 return;
259 }

// AR JE Al R R A AT S B A R T
// %0 — ecx CEEMBRII TR count) s %1 — edi (MMERERVEFFGEHAE) s %2 - eax (EAMHEERTFD
260 asm_ ("eldln\t”

261 “rep\n\t”

262 “stosw|n|t”

263 £+ %" (count),

264 D7 (start), “a” (video erase char)
265 en” a7

266 }

267

/177 WBRAT N SR AL BEAR IR 2, BA—A4T R A,

// ANST % SUCE45740: "ESC [sK' (s = 0 MERBNTR: 1 AIFLAMER: 2 2ATHMIER) .
268 static void csi K(int par)
269 {
270 long count asm (“cx”); /) WE AT,

- 218 -

7.5 console. ¢ F&/¥

271 long start asm_(7di”);
272
/) SRS =Pl L e e MR) T AP EON U R T 46 (4 B 7s A7
273 switch (par) f{
274 case 0: /% erase from cursor to end of line */ /* MIBRIChRETRTTF */
275 if (x>=video num columns)
276 return;
277 count = video num columns—x;
278 start = pos;
279 break;
280 case 1: /* erase from start of line to cursor #/ /* WERMATIFAREIEhrAL */
281 start = pos — (x<<1);
282 count = (x<video num columns)?x:video num columns;
283 break;
284 case 2: /* erase whole line #/ /* WiHATFFFAMER */
285 start = pos — (x<<1);
286 count = video num_columns;
287 break;
288 default:
289 return;
290 }

// SR JE Al R R A S R A 3
// %0 — ecx (CEMIBRIFFFEL count) ;5 %1 — edi (MMEREAEFFUGHbE) 5 %2 - eax CEANMBERRFTT)
291 _asm_ (“cld|n\t”

292 “rep\nlt”

293 “stoswln\t”

294 2 7¢” (count),

295 D” (start), “a” (video erase char)
296 ex” a7

297 }

298

o /)] TR (ER) (RTFEHRE AR, . TRk, R, B85 .
// ANST H SCFFFFP4: "ESC [nm o n = 0 IEWEon; 1 It 4 Rk 7 kiE; 27 EWER.
299 void csi_m(void)

300 {

301 int i;

302

303 for (i=0;i<=npar;i++)

304 switch (par[i]) {

305 case 0:attr=0x07;break;
306 case l:attr=0x0f;break;
307 case 4:attr=0x0f;break;
308 case 7:attr=0x70;break;
309 case 27:attr=0x07;break;
310)

311)

312

/77 WRYE R E BREhR.
// FRYE BN WA CHR AT NAT & pos, WHE B RTEHIEE AR BRI E .
313 static inline void set cursor (void)
14 {
1

RIS

cliQ;
// TS R G P AT A IR B R B 2 A7 A v 14 ks a7 Bon i B s) . RIEE AN EkR

- 219 -

7.5 console. ¢ F&/¥

// AR E T (A SN 9 AR m T R RN T HEREL 2) o SRARAT BRI R WA ERE R
outb p(14, video port reg);
outh p (0xff&((pos—video mem start)>>9), video port val);

/) FHEH RS A AIERE v15, FRROEAR i B T B A p.

w
—
»

w
=
-3

318 outb p(15, video port reg);

319 outh p (0xff&((pos—video mem start)>>1), video port val);
320 stiQ;

321 }

322

/1)) RIEXF i VT100 FrIE T4 o
[/ AW R F RN BB
323 static void respond(struct tty struct * tty)

324 |

325 char * p = RESPONSE;

326

327 cli(; /] K.

328 while (*p) { /] B RN S A
329 PUTCH (*p, tty—>read q) ;

330 ptt;

331 }

332 sti(); // TEH .

333 copy to cooked (tty) ; [/ A BRI GRON B BAF)
334 }

335

/1] AEIARIEARAN — R T4 o

336 static void insert char (void)

337 {

338 int i=x;

339 unsigned short tmp, old = video erase char;
340 unsigned short * p = (unsigned short *) pos;
341

/) FHRTHAITE TR — K, A B TR AT IR AL
/) BT LR TR, AT R — AT R A 202

342 while (i++<video num columns) {
343 tmp=*p;

344 *p=old;

345 old=tmp;

346 ptt;

347 }

348 }

349

/) R AT OUDERRANE B A AT D
/) BRI CRRITAEAT BB 0] R 347

350 static void insert line(void)

351 f

352 int oldtop, oldbottom;

353

354 oldtop=top; // ARLEJR top, bottom fH.

355 oldbottom=bot tom;

356 top=y; /) B BRI IRAT .

357 bottom = video num lines; // WE R NRIGAT .

358 scrdown () ; /] WICARTFERAE, BN W FIR s —4T .
359 top=oldtop; // WE R top, bottom{H.

- 220 -

7.5 console. ¢ F&/¥

360 bottom=oldbottom;
361 }
362

/11] MR ICARAE I — A5
363 static void delete char (void)

364 {
365 int i
366 unsigned short * p = (unsigned short *) pos;
367
// RS ehR kB A cA B, R
368 if (x>=video num columns)
369 return;
/] WO — AN AR BT R A5 e —# .
370 1=x;
371 while (++i < video num columns) {
372 kp = *(p+l);
373 ptt;
374 }
/) B Ja N TR N AT (R AT o
375 *%p = video_erase char;
376 }
377

/11] R ICHRTAEAT o

/] WOCHRITEAT MR b N BT
378 static void delete line(void)
379

380 int oldtop, oldbottom;
381

382 oldtop=top;

383 oldbottom=bottom;
384 top=y;

385 bottom = video num lines;
386 scrup () ;

387 top=oldtop;

388 bottom=oldbottom;
389)

390

///] AEICHRAEATH N nr AN T
// ANST ¥ SU74F)¥41: "ESC [n@ *
// Z¥ nr = Lifiin.
391 static void csi_at(unsigned int nr)
392 {

// ARLE)R top, bottom {H.

/] BEE bR BT URAT o

/) WE LR IGAT

[/ WOCRRITUR AL, w2 R —A4T .
// S5 top, bottom {H.

) URRA T REOCT AT M TG AT e 0, TIEA 1

393 if (nr > video num columns)
394 nr = video num columns;
395 else if (!nr)
396 nr = 1;
// VR ANTG E R
397 while (nr—)
398 insert char();
399 }
400

/) TERRRLEAE N nr 4T

- 221 -

N B S

NFA

7.5 console. ¢ F&/¥

// ANSI #: SUCFF5 %) ESC [nL .
401 static void csi L(unsigned int nr)

402 {

[/ IMPSEANRATEOR T R 2 AT480 WBC) B Wi 8G. AT Eonr 24 0, WA 147,
403 if (nr > video num lines)
404 nr = video num lines;
405 else if (!nr)
406 nr = 1;

// PEHEANTR EAT 8 nr.
407 while (nr—)
408 insert line();
409 }
410

) MIBEARA I nr AT
// ANSI #: U4 ESC [nP’ .

411 static void csi P(unsigned int nr)
412 |

/) BER MR AT BOR T AT A58, WO A7 74786 A MR A5 8 nr 2 0, WIINER 14747 .
413 if (nr > video _num columns)
414 nr = video num columns;
415 else if (!nr)
416 nr = 1;

/) PEIAMIERRE 7T nr
417 while (nr—-)
418 delete char() ;
419)
420

/71 MERYERRAR) nr 47,
// ANST % X J¥%: "ESC [nM .

421 static void csi M(unsigned int nr)

422 {
/) SRR AT HOR T Bl 2 AT, WIBOH bR Bon AT 80 45 MBRIAT £ nr 2 0, WUUMMER 147
423 if (nr > video num lines)
424 nr = video num lines;
425 else if (!nr)
426 nr=1;
/] MRS E 4T nr s
427 while (nr—)
428 delete line();
429 }
430
431 static int saved x=0; /] RAFHIEHRB) 5
432 static int saved y=0; /] BRI AT 5.
433

/1] RAE TR AL

434 static void save cur(void)

435 {
436 saved x=x;
437 saved y=y;
438 }

439

) AR R R

440 static void restore cur (void)

- 222 -

7.5 console. ¢ F&/¥

441 |
442 gotoxy (saved x, saved y);
443 '}
444
/1] BG5S R
[/ MR tty B h AT, I RaRTERE g b
445 void con write(struct tty struct * tty)

446 {
447 int nr;
448 char c;
149

[/ BRI B AR AT TR o, SRR R RS P AT T AR B
450 nr = CHARS (tty—>write q);
451 while (nr——) {

) WEFIREC AT ¢ SRR ITARE AR IRAS state 2 BIACEE . RASZ W IIEHOC R A
// state = 0: FIEHRFS: BEFLRE 4, BEFEZRE L, BFEFAE [
// 1 FUBRES 0, I HPRF &R UFFF ESC(0x1b = 033 = 27);

// 2: FUBIRE L, HHTPRE [
// 3¢ JFURIRAS 20 U RA 3, JFHZARRE T Bidls .
// 4: FUBIRA 3, JFHFARIAR) B
452 GETCH (tty—>write_q, c);
453 switch(state) {
454 case 0:
/) WMRFFFA R R (e>31), I HWARY JRFAF (c<127), W
455 if (c>31 && c<127)
/] A TR AT R BR u LASL, WP OERR S 247 k40 IR EOGER AL E X NI N AEFE £ pos.
456 if (x>=video num columns) {
457 X —= video num columns;
458 pos —= video size row;
459 1£0;
460 1
/] R ¢ RIS RAAET pos &b, IFREOEERGHE 141, [RINEKE pos XN HIFEF) 2 AT
461 ~asm__ (“movb _attr, %%ah\n\t”
462 “movw %%ax, %1\n\t”
463 2t "a” (¢), “m” (%(short *)pos)
464 :ax’);
465 pos += 2;
466 X+
/) TR o B U FF ESC, MEAHUIRE state B 1.
467 } else if (c==27)
468 state=l;
[/ WMERTRE ¢ B BATRF (10), BUEEEHIRAF VI (1), sE EHuifF FF(12),, WEIDFRRET 17,
469 else if (c==10 || c==11 || c==12)
470 1£0;
[/ WMRFRF ¢ ZAERF CR(13), WK EFR % 5) 202551 (0 51)) .
471 else if (c==13)
472 cr();
/) WRFHF ¢ & DEL(127), WK ehs A il — AR 8 kAR 8A0 . RO he s B bR A7 .
473 else if (c==ERASE CHAR(tty))
474 del O ;
// WMERFHF ¢ & BS (backspace, 8) , WIROGHRAFE 14, FFAHN R HE AR N A -7 B 7 5 pos.
475 else if (c==8) {
476 if (x) {

- 223 -

7.5 console. ¢ F&/¥

477 X

478 pos —= 2;

479 1
[/ WA ¢ KRR AT TAB(9), WPROCHRHE 2 8 WA o 25 UEI AR 51 B0 H B 45 B K914
/) W EAR#E 2 N —4T Lo

480 } else if (c==9) {
481 c=8-(x&7) ;
182 X 4= c;
483 pos += c<<1;
484 if (x>video num columns) f{
485 x —= video num columns;
486 pos —= video size row;
487 1£0;
488 }
489 c=9;
[/ WRTFAF ¢ SEWAT BEL (), R AT R 4, 2375 g
490 } else if (c==7)
491 sysbeep () ;
492 break;

/) MR FURASAE 0, I H PR 25 U745 ESC(0x1b = 033 = 27), WIEFPRA 1 kb3,
493 case 1:

494 state=0;
/) AR ¢ & 0 WHRPRE state #3) 2.
495 if (c=="/")
496 state=2;
[/ MRTRT ¢ &E, WPDGHE 2 A7 IFHaR AL (0 41) .
497 else if (c=="£")
498 gotoxy (0, y+1) ;
/) WSS ¢ &M, Weks ERE—1T.
499 else if (c=="M")
500 riQ;
/) WMRFRF ¢ & D, WDEks R —1T.
501 else if (c=="0")
502 1£0;
/) WMEBFRF ¢ &7, WKL L b N A A
503 else if (c=="2")
504 respond (tty) ;
[/ METRF ¢ 2 T, R UL E . FEXEAEEH ! NMAZE (c=="T7).
505 else if (x=="7")
506 save cur () ;
/) WMRFRF ¢ 28, MK BN R RAF FDOARALE . TERIX AR S Mg (c=="8") .
507 else if (x=="8")
508 restore cur() ;
509 break;
[/ WMRFERSE 1, HFH B850 U, W RIPIRES 2 SkRAab P,
510 case 2:

// E S ESC B AR A S HAE WA B par [(1VES, K51 H npar R E I, JF HECERS
[/ N 3e UL FARIAE 2", WHEFERPRE 3 ZALRE, AW EE—77F, HAPRE 3 B A,

511 for (npar=0; npar<NPAR; npar++)
512 par [npar]=0;

513 npar=0;

ol4 state=3;

515 if (ques=(c="7"))

- 224 -

7.5 console. ¢ F&/¥

51 break;
/7 TORECREIRAS 2, B FUOREIRA 3, HIR TR s, WIZE FImARRE,
51 case 3:

[/ R ¢ s, JEHA par AW, RS I 1.

518 if (c==", & npar<NPAR-1) {
519 npar++;
520 break;
/) WMRFERF ¢ ZEFFRT0 9, WPRAZ AR W BB 5 npar v 5 [HIRAL R 10 BEHIEL .
521 } else if (e>="" & c<="9") {
522 par [npar]=10%par [npar]+c="";
523 break;
/) WL FPRAS 4.
524 } else state=4;

[/ WERERAAEIRAS 3, IFHFAEAR") sy, MR RPRES 4 b2, H R ARG state=0.
525 case 4:

526 state=0;
527 switch(c) f{
[/ AERTA ¢ &G B 7, W par [JHEE—ADNSEMAERI 5. HISANE, WROLIRAE .
528 case 'G’: case ' :
529 if (par[0]) par[0]-—;
530 gotoxy (par[0],y) ;
531 break;
[/ MEFRF ¢ 2N, W ANSHEREO s ERINATE. 52800 0 N L —1T.
532 case 'A:
533 if (!par[0]) par[0]++;
534 gotoxy (x, y—par[0]) ;
53b break;
/) MEPFFF ¢ & B E e, W ANSERIChR FRINATE. 52808 0 W17,
536 case 'B’: case ‘e’:
537 if (!par[0]) par[0]++;
538 gotoxy (x, y+par[0]) ;
539 break;
[/ MPFFF e & CE a, W ANSERIChA IR E. HSHC8 0 WA,
540 case '(’: case ‘a’:
541 if (!par[0]) par[0]++;
542 gotoxy (x+par[0], y) ;
543 break;
[/ WMRFRF e &' D, W AN SEREO R AT HZHCh 0 WA —F%.
544 case 'D’:
545 if (!par[0]) par[0]++;
546 gotoxy (x—par[0], y) ;
b47 break;
/) WMRFRF ¢ & B WSS EREO0hR 0 TR AIATEL, FFWIE 0 5. HSEC08 0 W17,
548 case '£:
549 if (!par[0]) par[0]++;
550 gotoxy (0, y+par[0]) ;
551 break;
/) WMRFRF ¢ & F W ANSEREO R0 ERAIATE, FFWIE 0 5. HSH08 0 W BB 17,
552 case F’:
553 if (!par[0]) par[0]++;
554 gotoxy (0, y—par[0]) ;
555 break;

[/ WRTRE ¢ A& d s WA S ERECAR T ERIAT S (A0 714D .

- 225 -

7.5 console. ¢ F&/¥

556 case 'd’:
557 if (par[0]) par[0]——;
558 gotoxy (x, par[0]) ;
559 break;
[/ WMEFRF ¢ & W E £, WEE—NSEAREHBRINAT S, B oASERLO B R 55 .
560 case 'H’: case '17:
561 if (par[0]) par[0]-—;
562 if (par[1]) par[1]-—;
563 gotoxy (par[1], par[0]) ;
564 break;
/) WMRFRF e & T WA SEUE LOGAR I b AL &3 b (1 77 2K
// ANSI ¥ SUFp%1: " ESC [sJ (s = 0 MBRChrBIbEAeikom; 1 MBRBEF I B 6hrib; 2 BB MER) .
565 case J:
566 csi_J(par[0]);
567 break;
/) WMRFRF ¢ &K WA SEURE LD GAR I EAL B AT T A R 347 I Bk AL B 7 2K
// ANST ¥ U575 TESC [sK (s = 0 MBRBATRE: 1 MIFMHMER: 2 BEATHRIMER)
568 case 'A’:
569 csi K(par[0]);
570 break;
[/ WRTRF ¢ &L, FORTEICARALE AN n AT (ANST 4% LF 45741 ESC [nL)
571 case 'L’:
572 csi L(par[0]);
573 break;
[/ ARTRT ¢ W, FORIEICARALE A MR n AT (ANST % 745741 ESC M)
574 case M’:
575 csi M(par[0]);
576 break;
/) ARTRT ¢ &P, FORIEICARALE AL MR n AT (ANST B 745541 ESC [nP”) .
577 case P’:
578 csi P(par[0]);
579 break;
[/ WRTRE ¢ '@, FOREIChR AL EAMEA n AT (ANST #e U745/ BSC [n@) .
580 case '@
581 csi_at(par[0]);
582 break;
/) WRFRF ¢ &', RoRSURhR AL F R Won @Y, LhanhitH . I RIZe. KR, R WA
// ANST % SUCEfF)740: "ESC [nm' o n = 0 IEW Won; 1 I 4 i rRIZ; 7 kE: 27 1IEW BR.
583 case ‘m’:
584 esim();
585 break;
/) WMRFRF e &, WFR WA S EBBCEIR R T T M kA5 .
586 case ‘r’:
587 if (par[0]) par[0]-—;
588 if (!par[1]) par[1] = video num lines;
589 if (par[0] < par[1] &&
590 par[1] <= video num lines) {
591 top=par[0];
592 bottom=par[1];
593 }
594 break;
[/ MBFRF ¢ & s™, WFRIRRAE ST AR T EAL &
595 case 's:

- 226 -

7.5 console. ¢ F&/¥

596 save cur();
597 break;

[/ WA ¢ 20, WIFRIR IR DGR B AR AF AL B AL
598 case ‘u’:
599 restore cur();
600 break;

602 }
603 }
// Bt ISR DGR E, n) B il R IL R WoR A
604 set_cursor () ;
605 }

607 /*

608 * void con init(void);

609 #

610 # This routine initalizes console interrupts, and does nothing

611 * else. If you want the screen to clear, call tty write with

612 * the appropriate escape—sequece.

613 *

614 * Reads the information preserved by setup.s to determine the current display
615 * type and sets everything accordingly.

616 #/
/%
* void con_init(void);
* EXAFRETAIG R G T, e A A WUR R E BT S, A
* WY P tty write () BEL.
*
* I setup. s FEPORAFHOME R, HILARAE AT Wonas 282, JF HE I S 4.
*/
617 void con_init (void)
618 {
619 register unsigned char a;
620 char *display desc = 722727
621 char *display ptr;
622
623 video num columns = ORIG VIDEO COLS; VARV AT T e A
624 video size row = video num columns * 2; // BATFHMHTIHL.
625 video num lines = ORIG VIDEO LINES; /] SR R T RATEL
626 video page = ORIG VIDEO PAGE; // AR R G .
627 video erase char = 0x0720; /] BEBRTAF (0x20 BoRF4F, 0x07 2B i) .
628
/) WRIEAG WoR B AT 7, WRR 2 0 B dt .
629 if (ORIG VIDEO MODE == 7) /* Is this a monochrome display? #/
630 {
631 video mem start = 0xb0000; /) BB SRR AR AR .
632 video port reg = 0x3b4; /) WEP BRI T .
633 video port val = 0x3b5; /) R H A AT A i]

// M BIOS " int 0x10 ZhfE 0x12 FRAFH) B UE B, HIM /R R SR RIS 2RO BoR R,
// W AT AR v R Dy BT 2K BX A AR FEANGE T 0x10, WJUEA] & EGA <o DRIHI4G
// BRIy BGA Aty Pl LG N A R S itk 2 0xb8000; I B /s A il 7455 H: Jy” EGAm’
// AERGWIEE AR Sos 24008 A B0 WO AE b A B
634 if ((ORIG_VIDEO EGA BX & Oxff) != 0x10)

- 227 -

7.5 console. ¢ F&/¥

635 {

636 video type = VIDEO TYPE EGAM; // ¥ & /2% (EGA Hifh)
637 video mem end = 0xb8000; // BB TR WA AR ik
638 display desc = "EGAm”, /) WETRTRERF
639 1

// R BX WA AR B AE T 0x10, JUI5 B2 B (5 s MDA I BEE AR S 4
640 else

641 {

642 video type = VIDEO TYPE MDA; // ¥ W~ (MDA Hifh) .
643 video mem end = 0xb2000; [/ WE SR WA AR mit
644 display desc = “#MDA”; /) WE TR ERFE
645 }

646 }

// IR BIRBERAK 7, WA, T SR WA GG by 0xb800; B Rl R 51 % A7
// et D Huhbhy 0x3d4; B 75 A7 fs o I Huhk 24 0x3d5.

647 else /% If not, it is color. #/
648 {
649 video mem start = 0xb8000; [/ BR NAF GG HbE .
650 video port reg = 0x3d4; /] BCERAO B INR G| A A A
651 video port val = 0x3d5; /] BCERAD BN B A A A
// PRI R R AR BX ANEE T 0x10, WU EGA Bon k.
652 if ((ORIG_VIDEO EGA BX & Oxff) != 0x10)
653 {
654 video_type = VIDEO TYPE EGAC; // ¥'& W/~ (EGA Bfh).
655 video mem end = 0xbc000; // WE BN WA AR sk
656 display desc = "EGAc”: /) WETRTRERF
657 }
// R BX TAE AR EAE T 0x10, MUEW]JE CGA Son o WBEAH N 240
658 else
659 {
660 video type = VIDEO TYPE CGA; // % 'E B R2KA(CGA) .
661 video mem end = 0xba000; // WE B NAE A ik,
662 display desc = “#CGA”; // BB SR HR AT H
663 }
664 }
665
666 /% Let the user known what kind of display driver we are using */

/% AEH P AE R ATIEAE AT 2K SR IR AR */
667
[/ AEBRRERAT F AR Bos SRR AT B . SR G T R S B BRI AR I A A B AL
[/ ER BoRiRER display ptr dRBIFARE AT A ZE 4 DAL (BN FRTH 2 N, BRI 8) .

668 display ptr = ((char *)video mem start) + video size row — 8;
[/ RGN AR R R, R HAERH AN TR I AN T
669 while (kdisplay desc)
670 {
671 *kdisplay ptr+tt = *display desc++; /] EHIFAT
672 display ptrt+; /) BHEN AR .
673 }
674
675 /% Initialize the variables used for scrolling (mostly EGA/VGA) #/
/% MG TR B AR & (2 T EGA/VGA) *+/
676
677 origin = video mem start; /] BEBEELS WoR W A7 .

- 228 -

7.5 console. ¢ F&/¥

678 scr_end = video mem start + video num lines * video size row; // &RE&EHRNAFHE,
679 top =0; /) BT

680 bottom = video num lines; // BEAT S,

681

682 gotoxy (ORIG X, ORIG Y) ; /] HIEHICHRALE x, y FIRE IR AR B pos.
683 set_trap gate (0x21, &keyboard interrupt); // BEHEEL A WIFEBETT.

684 outb p(inb p(0x21)&0xfd, 0x21) ; // B 8259A oot R TR TR BE e, U TRQL.
685 a=inb_p(0x61) ; // FEIR LU AL 1 0x61 (8255A ¥ 1 PB) .

686 outb p(a]0x80, 0x61) ; [/ VBRI TAE (67 7 BAL

687 outb (a, 0x61) ; // FRAVEERL AR, MU AL A R .

688 }

689 /# from bsd-net-2: */

690

///] A5 b,
// S347 82554 PB ki 1AL 1 R 0.
691 void sysbeepstop (void)

692 {
693 /* disable counter 2 #/ /* ZEILENH 2 x/
694 outb (inb_p(0x61)&0xFC, 0x61) ;
695
696
697 int beepcount = 0;
698
// FFIm N,

// 8255A i v PB i AL 1 HIVE A 88 (0T T 145 55 Az 0 HIAE 8253 ﬂéﬁ%ﬁﬂ?’]l]ﬁ%, € IR
[/ kAR s, VBN AR RS AR . R R A, WL SR TT)E PB i
[/ AL RIE O CEAL) , AR5 TRCE E I 2 A% — 5 I I AR J AT

699 static void sysbeep(void)

700 f{

701 /* enable counter 2 #/ /* JFJAEm#% 2 */

702 outb p(inb p(0x61) |3, 0x61);

703 /% set command for counter 2, 2 byte write ¥/ /% LW EHEMNE 2 Wl */
704 outb p(0xB6, 0x43);

705 /% send 0x637 for 750 HZ #/ /+ VEMZ K T50HZ, PIGIEE RHE 0x637 */
706 outb p(0x37, 0x42);

707 outb (0x06, 0x42) ;

708 /* 1/8 second */ /* WENGIa]h 1/8 Fb */

709 beepcount = HZ/8;

710 }

711

7 5 3 ;H; b |=|ng\
7.5.3.1 RiEHF iz
X BAV LS AT s Won B AU . fiIA T MDA. CGA. EGA Fl VGA sl 38 T 2
T v 1, 1% 23 L4 5 CGA i F 1) MC6845 it v e 4%, Ho A FRF A i WL T T #1136 . Horh L CGA/EGAIVGA
i 11 (0x3d0-0x3df) A B HEAT Ui i, MDA f#)uit & 0x3b0 - 0x3bf.

X RIAT AR NIEAL BOE . RS En RINRGIA A4, PR T BB A o iy i
WAFAR L (r0-r17), SRR S HUS B A7 o BRI R Ao A A s i RO REXS o R
A R A7 s AT R AT

7.5 CoA im AT FRAMNRIER

- 229 -

7.5 console. ¢ &%

Uity I s | BRAAE
0x3d4 E CRT(6845) %R 5| aifr-ds o FH T b Bl v 1 0x3b5 s i) 14N Bt 25 745

(r0-r17),
0x3d5 = CRT(6845) %4 75 fr-d o I rP il 75 A7 r12-r15 ik nf LA,

SR AT Ar AR DRE UL T 3R .
0x3d8 ws | BT A

7 7-6 KH;

f75=1 FVFINKER;

£ 4=1 640*200 & JEH;

fi7 3=1 FeVFALAI;

fi7 2=1 AR,

£ 1=1 EIERIA: =0 SUABI,

£ 0=1 80*25 JCARE; =0 40*25 LA
0x3d9 B | CGA MR A fEas . LRI RH IR .

77 7-6 KHI;

£ 5=1 Wah 4. #(cyan). % (magenta). [(white);

=0 PR (red). ZE(green). ¥i(blue);

£ 4=1 BEgBoREE . CAE R

fi7.3=1 15 SR 40%25 [IAHE. 320%200 Y 5t. 640*200 [HTHFi0,

f7.2=1 WoR4 (0. 40%25 [{IUHE. 320%200 f{)75 5. 640*200 1) 5

f71=1 WoRgk(h: 40%25 [{IUHE. 320%200 175 5. 640*200 1) 5

£7.0=1 WoRiEfh: 40%25 [{IUHE, 320%200 175 5. 640*200 1) 5
0x3da b CGA B/RIREZ A48 o

7 7-4 KH];

7 3=1 7T E I B s

7 2=1 JEEETF KM =0 JEEETF HH s

7 1=1 JEEERIEA

£7 0=1 JUATHERTIEs NAE; =0 BRI ASZAE B IR N A7
0x3db 5 THBRCER A (RAETAR).
0x3dc s | MREDCES U CREDGEERIEA 0.

7.6 MC6845 NEMKIR B ER L VIIAE
i | B LA BEIE | 40%25 #ia | 80*25 ALl | EITEARAL
r0 K40 M ¥ v = 0x38 0x71 0x38
rl VS A=A FIF = 0x28 0x50 0x28
r2 S A DAL =G = 0x2d 0x5a 0x2d
r3 ST T e T vk e . r— 0x0a 0x0a 0x0a
FKV [R) 20 Rk v TR 5

r4 T B FAT 15 Ox1f Ox1f ox7f
rs P [F) 0 Rk 0 P AT | 5 0x06 0x06 0x06
SR el FRAT |5 0x19 0x19 0x64
r7 T A T | B Ox1c Ox1c 0x70
rg BT AT IEFE = 0x02 0x02 0x02
r9 SRFAFIATEL AT | 5 0x07 0x07 0x01
ri0 | SebrIraafr & AT | 5 0x06 0x06 0x06
N Y TN VA H#AIT | B 0x07 0x07 0x07
r12 | WoR ARG R E () = 0x00 0x00 0x00
ri3 IR NAER AT E (1) = 0x00 0x00 0x00
ri4 | Jekr M ErALE () BIE | AR
1S | Jekr 2R B (K) g
r16 | G UEIALE () B nAz

- 230 -

7.5 console. ¢ F&/¥

(117 [HaihE (1) | E |
7.5.3.2 REIR(ERE

TR DHRA TR FiR E THR T R A AT (0 — BRSO W 1) B Bl (1 _E4:3) scroll up)slial Rl 4
zlj scroll down), Ui AERE R A1 A2 7 LA O 4 A A B AN Bl VARG, IS 0KE D e P9 ¢ 1) _E A B
e td DT s NAE I R8N R DR WA SR SRR & L 1) M RSBl AERR e P o R B B s il
R WA IR A AL origin LLA I BERE e AN AR i o 6 T IX YRR B A PRI DL o

XY B8, BRI s N A B TFE) R R 80 AR TE o WA L 2 s e, L BG) RY
T FEHE) N AR B IR AR B WAEER IR A7 B (video_mem_start) FILAR 347 & video_mem_end Z.[8], HE4
SR B R P 2% A U s AR B BT o R 26E I BRI A B B) R RS B R Y T S bR
R AE A S (video_mem_end)IX FIb i, w77 ZEAS B0 N WS A7 HR B, CAORIE T AT 2470 b gl
HBVAAE W R WATTE N o FEIXER b, R A2 K b I (1) P A7 B A% 3 31 S B o W A7 I T AR AT
HAb(video_mem_start).

FEFPh SEBR AL B AR 2 — DT . T DR A oIR8 origing SRS W0 IV B 45 P A
S WoR N AE T S (video_mem_end), U B HH AT R R Y (1) A A7 S B 5 B SE B o P AE T AR
E Ak (video_mem_start);)i M8 80 5 b L IR AT SRS A A . W R TIE 7.4 H R . HobE (a)
X I B b R B,] (o) I T RS Bl A A B) AR 2

L Ll — i ortin
origin —
Hrorigin
L . i;g;‘/\'
TR 2K o
A LBt GBS N T scr_end
B
scr_end _§ - origin —sl
Hr scr_end \
e
scr_end
EENCE \; .
B R WA
(@) % —fts (b) FEE AR MR

E7.4 | %R (scroll up)iEr=E

6]~ G b R A S) BB BRI, i@ RXPTMSRUG O, RS th TR ad 1 B, It
Bt E07 L2347, I FLAE DR YIRS I P A8 H 3 7s AL A1 I 5 0 B Bt A B 23
B s W AF IR R A o

7.5.3.3 ANSI & ZHI 55

Sl A PR ThEe, a3 A T E NS B g N 15 2% (B D) A 8 B (s 2) o« 2o n] A1 235
il A, A1 & amPAT — € A E A S OUNAE B4 L BR— N5 XM =0, tHE LT Ll &
LB AT B EhR . Ul B R BRI R S E . OO T RERRMRAE P I PAT AL B RE R TR 2 il iy 2
BEAT BB RIR . G VLIRS TR A R A

- 231 -

7.5 console. ¢ F&/¥

PR SEAR ASCIN T3k 11 32 /MF5(0X00 - OXAF 5 0-31) L) 77 DEL(OXTF 5 127), Z LKt
(i) ASCIN 592 L% — MR E KA L A 2 RN IL R FHEAE BT, T0I0E IR B 1
R . B4, RFT VTL00 L3R IR0 W R R

RT.T =87

BHRIERE |)\ | P | CREURATSED

NUL 000 0x00 TEHINI 20 CMRAEAER A M) o

ENQ 005 0x05 FEIE N B

BEL 007 0x07 N2 T

BS 010 0x08 KRR AE 10 JE 3 — /PR B AL . B hR OO ANAE oidiy, WIESE,

HT 011 0x09 B ChR S BT — AR . A B IR, W BT U ZAL,

LF 012 0x0a HEARHS S 3 — AN R AT HE (RATED

VT 013 0x0b YEH 0 LF.

FF 014 0x0c YEH i LF.

CR 015 0x0d B R B Y /AT I AE LAt .

SO 016 0x0e i/ i SCS =77 i 1) GL 47 4L .

S 017 0x0f P GO T4, 1 ESC 743k F.

XON 021 0x11 A &y 0T EAT AR A

XOFF 023 0x13 % P IBT R A 3% XOFF A1 XON LA, 13 1E k21w B ARG .

CAN 030 0x18 WRAEF AR L, WFAIASPATIIS L&KL RS BoR
HAR 1T

suB 032 Oxla fEHIA CAN.

ESC 033 0x1b PHE AT

DEL 177 ox7f TEHINI 20 CMRAFAER A M) o

P4 ©28 th ANSI(SE [[E K br it i) American National Standards Institute))5 A brE: X3.64-1977.
PEHI PP 245 tH— LR A) — MR TR P41, Zin BB I AN A1 I A R AT R R
TEpERE b, TR e I TRAE, toan, Bauhr. MERFRE. MBRAT AR BidE AN TERAE.
ANSI #5751t PA R — 283 AR s 52 4

Pl 5151 A fid(Control Sequence Introducer - CSI): Fon—ANER A, PRAL DI HE HA S 2
MBS — RANES T o R AT ZR . T, — R CSI AR ESC [

Z 4 (Parameter): FANELE AT AL — N EUE

BUEZH (Numeric Parameter): F/~— NS E, i n £ox.

P24 (Selective Parameter): H T —IhReFAEHERE 726, — M s £, W%, BAZ
AEFESE— AP I = A e,] 20 32 JLANE R84t CSI sa;sb;se F AR &5 CSI
sa F CSl sb F CSI sc F 524s—FE .

ZHCF45 R (Parameter String): FHA 5 SR IF IS 50544 5

BRIMHE (Default): %A PIAfTE € —MESCEE AL 0 1016, Biafie —A5 DReH CfE.

)5 P45 (Final character): F T 45— AN Ll 0741

ORI BOEITAAE N, ARSI E FRIZR R BE . ESC[0;4;7m

- 232 -

7.5 console. ¢ F&/¥

oIk

| A ? A
RS H
|
BRI
csl W

E7.5 =HIF5I0F
N I e R A 51 R

Esc Seq Function

E[nA move cursor up n lines
E[nB move cursor down n lines
E[nC move cursor right n characters
E[nD move cursor left n characters
E[n move cursor to character position n
E[na move cursor right n characters
E[nd move cursor to line n
E[ne move cursor down n lines
E[nF move cursor to start of line, n lines up
E[nE move cursor to start of line, n lines down
E[y;xH Move cursor to x,y E[H homes cursor
E[y;xf Move cursor to x, y
E[nZ Move cursor back n tab stops
E[nL Insert n blank lines
E[n@ Insert n blank characters
E[nM Delete n lines
E[nP Delete n characters
E[nJ Erase part or all of display:
n = 0 from cursor to end of display,
n =1 from begin of display to cursor,
n = 2 entire display.
E[nK Erase part or all of line:
n =0 from cursor to end of line,
n = 1 from begin of line to cursor,
n =2 entire line.
E[nX Erase n characters
E[nS Scroll display n lines up (forward)
E[nT Scroll display n lines down (reverse)
E[nm Set character attributes:
n= 0 normal attribute (all off)

n= 1 bold
n= 4 underscore
n= 5blink

n= 7 reverse
n = 3X set foreground color
n = 4X set background color

- 233 -

7.6 serial.c Fi/F¥

E[s
E[u

X =0 black X=1red

X =2 green X =3 brown

X =4 blue X =5 magenta

X =6 cyan X =7 white

You can set more than one thing by separating them with a
semi-colon. eg. E[0;1;33;40m

Save cursor position

Restore saved cursor position

E means 0X1B
if nis 0 then it can also be left off

E[0J

== E[J

7.6 serial.c f2FF

7.6.1 ThEEHEIA

X AR GE M A AT I L REATRIARAG o BEEBOAM A TS SR, IF B E SR AT R TR T R D

7.6.2 (XE5ERE

BF 7.5 linux/kernel/chr drv/serial.c 2fF

— = = = =
|>-J>|C»J|l\3|'—‘ |O [© |00 [[0 |01 [Lo DD [—

= | [O1

Syt
O [© [0

[N
—_

DO DO DO DN
512 (3 1R |

S*
* linux/kernel/serial. c
*
* (C) 1991 Linus Torvalds
*/
/¥
* serial. ¢
*
* This module implements the rs232 io functions
* void rs write(struct tty struct * queue);
* void rs _init(void);
* and all interrupts pertaining to serial I0.
*/
/%
* serial.c
* GFET T SEB rs232 MR N H Th g
* void rs write(struct tty struct *queue);
* void rs_init(void);
* DL A4 10 A 0 R T T I AL EEFE 7
*/

#include <linux/tty.h> // tty k3CfF, X THK tty io, HATHEFITHKIZE. HH.
#include <linux/sched.h> // WEEFEFLICME, X TAESSH) task_struct. FIUHAES 0 %,

[/ B —YE IR TS0 S FERE AT i N ST g pR B TR A .
#include <asm/system.h> // B#AELSCME. € X T B REC AL 2 BAE R N 70 G R 20
#include <asm/io.h> // o 3k3CfE. s SRR D E N/ Fr 2 s R .

tdefine WAKEUP_CHARS (TTY BUF SIZE/4) // 45 BAZ|h 54 WAKEUP_CHARS AN7FF0, i FiRKI%.

extern void rsl_interrupt (void) ; // BATE 1 P AR R FEE (rs io.s, 34) .
extern void rs2 interrupt (void) ; // BATE 2 P AL FRFEE (rs io.s, 38).

- 234 -

7.6 serial.c Fi/F¥

/1] WIEEA ER AT S
// port: HiI11 — 0x3F8, H12 - 0x2F8.,
26 static void init(int port)

27 {
28 outb p (0x80, port+3) ; /% set DLAB of line control reg */
s WE L AR I A7 A K DLAB f7 (F7. 7) %/
29 outb p (0x30, port) ; /% LS of divisor (48 -> 2400 bps #/
/% FRILWRF R FARF AT, 0x30->2400bps */
30 outb_p (0x00, port+1) ; /* MS of divisor #/
/% REPRF RN, 0x00 %/
31 outb_p (0x03, port+3) ; /* reset DLAB */
/% AL DLAB A7, FHELL AN 8 A */
32 outb_p (0x0b, port+4) ; /* set DIR, RTS, OUT 2 %/
/* BCE DIR, RTS, ZBHH it 2 */
33 outb p(0x0d, port+1) ; /* enable all intrs but writes #/
/% B TS (GOREET) LIAL, RVEFTA T B i «/
34 (void) inb (port) ; /* read data port to reset things (?) */
/% CEAR I, DAHEAT AT A (2) */
35 }
36

/) WAL ERAT R R R R AT O

37 void rs_init(void)

38 {

39 set_intr gate(0x24,rsl interrupt); // WEHBITH 1 KH K= A IRQ4 fF5) .
40 set_intr gate (0x23,rs2 interrupt); // WEHITH 2 K= A IRQ3 fF5) .
41 init(tty table[1].read g.data); // FIEAHAT I 1(data A& H5)

42 init(tty table[2].read g.data); [/ WIEAHAT A 2,

43 outb (inb_p(0x21)&0xE7, 0x21) ; // FCFTE 8259A (5 TRQ3, IRQ4 S SiER.
44}

15

16 /*

47 #* This routine gets called when tty write has put something into
48 # the write queue. It must check wheter the queue is empty, and
49 # set the interrupt register accordingly
50 *
51 «* void _rs write(struct tty struct ¥ tty);
52 #/
/%
* 1F tty write O OB BONGIH (5) AR SR N0 7R . 2 e 5k
* R BANFES NS, FAH N BCE W 25 A4
*/
///] ERATHAR IR
/) SEBR BRI AT IR R R F A7 4 O T bR a5, 78 UART F8uils RIX 255 SRVF R I 5
53 void rs_write(struct tty struct * tty)
54 {
55 cliQ; // R
[/ MG AFIASE, WM 0x3£9 (58 0x2£9) B He BT I R VF7F fEas N, IS B RIR R FE 7 A7
[/ R RVFRRE (2 D Ja, BEERZFAR.

56 if (VEMPTY (tty—>write q))

57 outb (inb p(tty->write q.data+1) |0x02, tty—>write q.data+1);
58 stiQ; // T

59 }

60

- 235 -

7.6 serial.c FEfF

763 HERER
7.6.3.1 RLBEITREDH UART

PC WL B A T30 A5 FH) S 2 BR A T3 A5 705 1 42 INS 8250 Bk NS16450 7805, ek UART Gl 5+
WU IERS) . X UART HIgnFE sk br L@t Iy i 25 AR 2 AT I S/ . BRI Tls: UART R —41%
P8t o R, BalOmyEH =344 . UART WA 10 N2 1rgs, At CPU BT IN/OUT $i54-xf Hidk
ATV) o IS 25 4728 RT3 1 A0 FH 34 WL 2 s o 2L PP i 11 Ox38-0x3fe I Tl I COM1 £ 4711, 0x2f8-0x2fe
X COM2 3 . 441 DLAB(Divisor Latch Access Bit) /& [B 7707 A7, & ek iR B 25 A2 2 (A7 7.

7.8 UART NERE F7a5 XY Mz im O & AR

N I

0x3f8 (0x2f8) | % DLAB=0 | 5 RIEMRIF & 17 8. & AR SO AT
i DLAB=0 | btk HF 4517 8. S ATIEIINT A -
B/ | DLAB=L | B/ TR T (LSB).

0X3f9 (0x2f9) | /5 | DLAB=L | /Sl 17 15 (MSB).
/T | DLAB=0 | /5 fovF a7 5.

P 7-4 4= 0 {REEAH;
7. 3=1 modem IR 25 ¥ fo 14
7 2=1 FUC AL R A BT FR 1T s
£ 1=1 RIERFF a7 Aras v W s
fr 0=1 SR EAE Tk eir.
Ox3fa (0x2fa) B B W AR AT A T BT AL B F DA T b o
WA 4 Fhep A — R
7 7-3 220 (AHD;
fr 2-1 M AR SE
=11 BWCREA W, e
=10 CEEIEGE T, P 2;
=01 RIELRFFFAAAT W, s 3;
=00 modem IRALAL 1, LA 4.
£7.0=0 FHRFALEERWT; =1 Jorh .
CEd s anipeasn
P 7=1 BRECE A7 U5 W47 (DLAB).

0 Fallds, KA PRFFE BT SRVF 25 A7 Vi il 5
£ 6=1 FRVFIAIT;
£ 5=1 PRFFATIEAL
P 4=1 G =0 A
£ 3=1 ARVFAHERE:: =0 AR
fr 2=1 L7514 =0 Jofs 1A
P 1-0 FARAL AR :
=00 57 Edasis;
=01 6 f7Edafs;
=10 7 i EdEAL
=11 8 Audif .
5 modem ¥l B £ 78 o
{7 7-5 4= 0 {#H;
P 4=1 AR 2 Wi e
7 3=1 HBIH a2t 2, AVF INTRPT 2| R4
fir 2=1 S P faeiint 1, PCHLARH;
fi7 1=1 iR k1% RTS R4
fi7 0=1 % 2 umh2s DTR 175K

0x3fb (0x2fb)

dm

0x3fc (0x2fc)

dr

- 236 -

7.7 rs_io. s FEfF

0x3fd (0x2fd) B PR ECRS 48

7 7=0 1%

f7 6=1 RIEBAT T4 N7 s

P 5=1 RIEPREF A2 NS, W LA K%
P 4=1 BRI A2 (8] W 25 A BRI 51 5

f7 3=1 itk A i

7 2=1 A ARREE TR s

A7 1=1 B TR

P 0=1 PR BHRAE U, ARG n] L.
0x3fe (0x2fe) B B modem RS FAERE . & Fonfa 5 kKA1
fr 7=1 A (CD) A RL;

fi7 6=1 MR FER(RI) A AL

£ 5=1 HHf £ 4 (DSR) A 445

£ 4=1 WEkRKIE (CTS) A5

7 3=1 FrIE] & Hpks

A7 2=1 L 2 e A5 5 1 U

A7 1=1 & Fdli % % 5t 45 (DSR);

f7 0=1 3 ¥EBRKIE(CTS).

7.7rs_io.s B

7.7.1 ThEEHEIA
IR S2 B rs232 BTG Th KT A F L R

7.7.2 K5 ERE

BIFE 7.6 linux/kernel/chr drv/rs io. s #&FF

1 /%
2 * linux/kernel/rs_io.s
3 %
4 * (C) 1991 Linus Torvalds
5 %/
6
7 /%
8 * rs_io.s
9 *
10 * This module implements the rs232 io interrupts
11 */
/%
* SRR rs232 N IR AR BERE) o
*/
12
13 . text
14 .globl rsl interrupt, rs2 interrupt
15
// size JEEEGBAINGE PP IX) 71K .
16 size = 1024 /* must be power of two ! WIS 2 IR T I His
17 and must match the value 5 tty io.c JV B V!
18 in tty io.c!!! %/
19
20 /* these are the offsets into the read/write buffer structures */

- 237 -

7.7 rs_io. s FEfF

[DUR RSB G P G (A 5 +/
// RRE XAE include/Tinux/tty. h 3P tty_queue S5H) P 20225 (1 2 2 o

rs_addr

head = 4
tail = 8
proc list = 12
buf = 16

startup

29 /*
* These are the actual interrupt routines. They look where
* the interrupt is coming from, and take appropriate action.

*/
/%

=0

/) AT S B R G 52 0x318 B 0x2£8)

/] G X Sk AR B -
/] G RARE T B -

/] SERRZGE MR T BUWAS o

/] BT B -

= 256

/* chars left in write queue when we restart it */

/% G RAA AR 256 7525 R (WAKEUP_CHARS) I, FRAI Tt vl LA'S %/

s XL BRI WL . R E SR A T TSR, RS PAT AR
* [RAEEL,

*/

.align 2
/1] AT v

~rsl _interrupt:

.align 2
////] AT

pushl § table list+8

jmp rs_int

_rs2 interrupt:

pushl § table list+16 // tty RPN M 2 M35 ot BASIHREF AU IE AR .

40 rs_int:

rep int:

%edx
%ecx
%ebx

Y%eax

pushl
pushl
pushl
pushl
push %es

push %ds

pushl $0x10

pop %ds

pushl $0x10

pop %es

movl 24 (%esp), %edx

movl (%edx), %edx

movl rs_addr (%edx), %edx

addl $2, %edx

xorl %eax, %eax

inb %dx, %al

testb $1, %al

jne end

cmpb $6, %al

ja end

movl 24 (%esp), %ecx
pushl %edx

I 1 AP B P N R

// tty RAXSN A1 05 e £ b AFR (tty io.c, 99) .

12 IR AL BERR P N A

/% as this is an interrupt, we cannot */

/* know that bs is ok. Load it */

/% T IS ANRRET, BATARIE ds AT IR, */
/% BTN AT GE ds. es $8 1 WZEHE B */

[/ BEH S FEE HUHEEN edx A 175

// WBPE 35 B¢ 39 4T L sG R AMERR R tE .

// BEEBAAIFRE (hhk) P edx.

// R T S Pedx.

/% interrupt ident. reg */ /* edx f8[n] " WIFRINE /LS */
// HPWTFRIR S AR g T 0x3fa (0x2fa) , S, B FIREEE .
// eax &,

// WP AR IR, LRI ks (5 4 b e o)

[/ ESEHIWTAE A AL B R W (67 0=1 o i =0 AR .

[/ FTCFRPAEEE W, WPk 4058 tH AL EE AL end.

/% this shouldn’ t happen, but ... %/ /% XASKRA, HiEx/
// al {H>6? ZEMPkFE S end CEAFIXFRE .

// B GEASFRE kD ecx.

// i 5 0x3fa (0x2fa) AFk.

- 238 -

7.7 rs_io. s FEfF

64 subl $2, %edx // 0x3f8(0x2f8) .

65 call jmp table(, %eax, 2) /* NOTE! not *4, bit0 is 0 already */ /% A4, {70 24 0%/
[/ BHEA)ESSR, A FAEBE W, al A7 0=0, f7 2-1 P Wi2sR, R S T 240 rh 25 3
/) T 2, XHFFIR 2, 15 RIPE RN N AP W R b, kA B L AR AR AR B .

66 popl %edx // AR TR AT A AR i 1145 0x3fa (R 0x2fa)

67 jmp rep_int /) Bk, AREERIWIAA JCAE AL EE T R Ak S A B

68 end: movb $0x20, %al // P TR A % 4 A W R 4 EOT.

69 outb %al, $§0x20 /* BEOI */

70 pop %ds

71 pop %es

72 popl %eax

73 popl %ebx

74 popl %ecx

75 popl %edx

76 addl $4, %esp # jump over table list entry # FEFZMPAFIFEE Hulil.

7 iret

78
// B WA A R R kA 2, ST 4 Bhorb bR YR
// modem AR, SPARFHW, SR, ZRERIRASA) b W .

79 jmp_table:

80 . long modem status,write char, read char, line status

81

82 .align 2

83 modem_status:

84 addl $6, %edx /* clear intr by reading modem status reg */

85 inb %dx, %al /% 03 modem ARZ A A7 AR AT AT (0x3fe) */

86 ret

87

88 .align 2

89 line status:

90 addl $5, %edx /* clear intr by reading line status reg. */

91 inb %dx, %al /% T B R TF AT AR AT S AL (0x3Ed) %/

92 ret

93

94 .align 2

95 read char:

96 inb %dx, %al /% BT dal.

97 movl %ecx, %edx /% HTH G2 BAS R ET Hudik D edx.

98 subl $ table list,%edx // ZZtBAFIFREFLEHE — 2470 5 D EASFRH kD edx,

99 shrl $3, %edx [/ ZEAH/8. XTHIO1Z1, MFHEO2E2,

100 movl (%ecx), %ecx # read-queue # HUZZZiP ALk sk Decx.

101 mov] head (%ecx), %ebx // B BAB 22 i Sk FR kT =D ebxo

102 movb %al, buf (%ecx, %ebx) // G FREMALLE T X k55 Frig 4 &

103 incl %ebx /) BRIREN TR —

104 andl $size—1, %ebx [/ G X KA SR B AT AR . FREF A REE I 2 X K1

105 cmpl tail (hecx), %ebx // ZRrPDCRIRE S RIREN LI .

106 je 1f [/ BT, RRGEM D, B RIbRS 1 A

107 movl %ebx, head (%ecx) /) RAFE SO) KR

108 1 pushl %edx /) RS RN (- B, 2 - B2, EASH,

109 call do tty interrupt // M tty Wb C RE (.

110 addl $4, %esp /) EFNESE, JFiREL.

111 ret

112

- 239 -

7.8 tty_io.c FEfF

113 .align 2

114 write_char:

115 movl 4 (%ecx), %ecx # write—queue # HUSZZMAF G5Fg kD ecx.

116 movl head (%ecx), %ebx // W5 BAF LR D ebx.

117 subl tail (%ecx), %ebx /) SRARE - RIRE = BAAIh RT AL

118 andl $size-1, %ebx # nr chars in queue # XFREHUBLEH .

119 je write buffer empty [/ WAL TRE = RARE, WIS A TC AT, Bk AR .

120 cmpl $startup, %ebx // BAF AR HGE T 256 N2

121 ja If // R, kA

122 movl proc_list (%ecx), %ebx # wake up sleeping process # MifESERFINEEFE .
/) WEERHZBAI I ERE B FaEE, JERIM S A5 ok =

123 testl %ebx, %ebx # is there any? # TR ?

124 je If IE/iE/J D 1e) R B AR 1 AL

125 movl $0, (%ebx) 7 LR R B A AT Is AR A (e BE AR .

126 1 movl tail (%ecx), %ebx // WRHRE

127 movb buf (%ecx, %ebx), %al /) NG RIREN LI 4 Dal.

128 outb %al, %dx // 13 1 0x3£8 (0x2£8) 126 tH BIfRKF A7 AE A% T o

129 incl %ebx // RAREHTH .

130 andl $size-1, %ebx /) RARENE B X A, W4 Al

131 mov] %ebx, tail (%ecx) // A B O i R AR .

132 cmpl head (%ecx), %ebx /) RAREHS kAR UL,

133 je write buffer empty /) FMEE, FoRBAFICA, Wk .

134 ret

135 .align 2

136 write buffer empty:

137 movl proc list (%ecx), %ebx # wake up sleeping process # MafiEZEfF IR,
/) WEERRZBANSI I BERE R 5L, T Wt 5 2

138 testl %ebx, %ebx #is there any? # HEAFHBERERD ?

139 je 1f # T, WA Tk BbR T 1AL

140 movl $0, (%ebx) T IR RS A WA T IRAS (M gE) o

141 1 incl %edx # ¥ 1n) 3 1 0x3£9 (0x2£9) .

142 inb %dx, %al # O RV A AR

143 jmp 1f # FHEAEIR .

144 1 jmp 1f

145 1 andb $0xd, %al /% disable transmit interrupt */

/% PEMCRIEDRFF A A a2 Pl (A2 1) %/
146 outb %al, %dx // BN 0x3F9 (0x2f9) ,
147 ret

7.8tty io.c 2FF

7.8.1 Thaetmik
AR AFE ARSI LR ORI, FESHL S
N p% %51 copy_to_cooked() tE7EIx HL 52 .

7.8.2 REZER

PR tty _read ()R tty write()o IERAE AT R

BF 7.7 linux/kernel/chr drv/tty io.c IBJF

J*
* Jlinux/kernel/tty io.c
*

* (C) 1991 Linus Torvalds

I o DO |—

- 240 -

7.8 tty_io.c FEfF

— = =
|N |>—‘|O |© [0 |3 o> |on

—
w

5 | [= |

—
-3

5 I |

[\
o

[\
—_

53 13]

*/
S*

* 'tty io.c’ gives an orthogonal feeling to tty’s, be they consoles
* or rs—channels. It also implements echoing, cooked mode etc.
*

* Kill-line thanks to John T Kohl.

*/
/%
* 7 tty fo. ¢ 4y tty —MEAEMDCHIESE, SR EI G BRATIEIE . %R R
* SEILT R, BT GO B

*

* Kill-line, ¥fif John T Kahl.,

*/

#tinclude <ctype.h> [/ PR . 8 LT L R AT W R M
#include <errno.h> [/ BRI, BEREFHEMEES . (Linus N\ minix F51HEH) .
#include <signal.h> /) A TR E TSR, A5 T E M LS T R R R

// RS AR NAS SR 5 AL B A R Y. LR

#tdefine ALRMMASK (1<<(SIGALRM-1)) // L (alarm) {5 5 R o

#tdefine KILLMASK (1<<(SIGKILL-1)) // &l (ki1 D) 155 BT

#tdefine INTMASK (1<<(SIGINT-1)) // BT (int) 155 BRI .

#tdefine QUITMASK (1<<(SIGQUIT-1)) // AR (quit) 155 FRT .

#tdefine TSTPMASK (1<<(SIGTSTP-1)) // tty R EE IR (tty stop) 15 5 BR il -

#include <linux/sched.h> // WEEFEFLCME, X TAESSH task_struct. FIUHAES O %,
[/ AT AT SRR S HOK B AFRBUE N\ 20T G R B

#include <linux/tty.h> // tty kX, ®XTHK tty_io, HBATHAF T HMNSE. HH.

#include <asm/segment.h> // BUEAESLSCIF. ST A RBEE A28 E IR N I 2 R 40

26 #include <asm/system.h> // RGIAo & X T BCEBUS SRS/ W 1E IR IS0 %

DO DO DN DO DO DO
BIBRIS ISR

#tdefine L FLAG(tty, f) ((tty)->termios.c 1flag & f) // H{ termios &5 4P B A HAR R G .
#tdefine I FLAG(tty,f) ((tty)->termios.c iflag & f) // H{ termios &5t B AR ARG .

: #tdefine 0 FLAG(tty,f) ((tty)->termios.c oflag & f) // H{ termios &4 B AR AR & .

// WL termios G5 K A U K AR G EE T IR — bR AT

#define L CANON(tty) L _FLAG ((tty), ICANON) /) WA R EE PR (D BIhREAL.
#define L ISIG(tty) L _FLAG ((tty), ISIG) [/ W& FhREAL
#tdefine L ECHO(tty) L_FLAG ((tty), ECHO) // R PR bR AT
#tdefine L ECHOE (tty) L._FLAG ((tty), ECHOE) // FEREET, HR] S AR A
#tdefine L ECHOK (tty) L_FLAG ((tty), ECHOK) // IRTEREIU, B KTLL R AT bR AT
#define L ECHOCTL (tty) L FLAG((tty), ECHOCTL) // HY|ul B4 FFibnEAr
#tdefine L ECHOKE (tty) L FLAG ((tty), ECHOKE) // IRTERE, B KTLL $8FRAT I35 R S br 4
// B termios g5 HR I AR AR & H 10— MR &AL
#tdefine I UCLC(tty) I_FLAG ((tty), IUCLC) [/ B AR bR B AR Th KRS B NG bR B AT
#define I NLCR(tty) I FLAG ((tty), INLCR) /) WHATRF NL #5922 7F CR ARA o

42 #define I CRNL(tty) I FLAG((tty), ICRNL) /) BURIZEAT CR FAATAT NL AR A o
#define I NOCR (tty) I_FLAG ((tty), IGNCR) // BB RIZFF CR bR AT
// B termios g4 iy A 2CbR 7 T I — AR AT
#tdefine 0 POST (tty) 0 _FLAG ((tty), OPOST) // B A bR A A P BT i AL B AR A
#define O NLCR(tty) 0_FLAG ((tty), ONLCR) /) BWARATHE NL #% 9 ZE 44T 17 CR-NL brikk o

- 241 -

7.8 tty io.c FF

// BRBIFF CR FHATHT NL ARk
[/ BIFATHE NL SAT I D BE IR i
/] BUNG RS 7 bR

47 #define 0 CRNL (tty)
48 #tdefine O NLRET (tty)
49 #define 0 _LCUC (tty)

0 FLAG ((tty), OCRNL)
0 FLAG((tty), ONLRET)
0 FLAG ((tty), OLCUC)

50
// tty BAREE I tty_table B4l JLHEE =AWIMAACIUESE, 73 e R G R 2 1R
/) H K 2 IR B .

51 struct tty struct tty table[] = {

52 {

53 {ICRNL, /% change incoming CR to NL %/ /* N4 \I¥) CR %4l NL */

54 OPOST | ONLCR, /* change outgoing NL to CRNL #/ /* ¥ i) NL #% CRNL */

55 0, /) BRI AR ERIIRIE R 0,

56 ISIG | ICANON | ECHO | ECHOCTL | ECHOKE, // AsHbifizlbris.

57 0, /* console termio #/ // ¥EHIE termio.

58 INIT C CC}, /) R TR

59 0, /% initial pgrp */ // I EMIAR R

60 0, /% initial stopped */ // Wl bR

61 con write, /] tty HREHRE

62 {0,0,0,0, 7}, /* console read-queue */ // tty ¥l G i\F,

63 {0,0,0,0, 7}, /% console write-queue */ // tty &G 5INA.

64 {0,0,0,0, ”} /* console secondary queue */ // tty ¥iEHlGHiBh (55) A,

65 b d

66 {0, /* no translation */ /) BN RFRE . 0, .

67 0, /% no translation */ // bR . 0, ol

68 B2400 | €S8, /) EEHBARRE . PR A 2400bps, 8 A7 EHIAT .

69 0, /) AHBFRE 0.

70 0, // AT 0,

71 INIT C CC}, /] FEHIFREA

72 0, /] BT EAIAR R4 .

73 0, /) WG bR .

74 rs write, /) B L tty SR EdRE .

75 {0x3£8,0,0,0, 7}, Sk rs 1 x/ /) HAT KSR 1B

76 {0x3f8,0,0,0, 77, /) AT 1 B .

17 {0,0,0,0, 7 [/ AT 1 BB .

78 by A

79 {0, /* no translation */ /) BN RFRE . 0, TR,

80 0, /% no translation #/ // R AR 0, T .

81 B2400 | €S8, /) PERIREARR & . PR A 2400bps, 8 A AEA .

82 0, /) AHBER AT 0.

83 0, // ATHRE 0.

84 INIT C CC}, /] R TATEA

85 0, /] B EAIAR IR .

86 0, /) WG bR .

87 rs write, // B2 tty R EdRE .

88 {0x2f8, 0, 0,0, 7%, /rrs 2% /) BAT% R 2 TS

89 {0x2f8,0,0,0, 7, /) AT 2 SR A .

90 {0,0,0,0, 71 /) AT 2 HiBh R A .

91 }

92 };

93

94 /#*

95 # these are the tables used by the machine code handlers.

96 * you can implement pseudo-tty’s or something by changing

97 % them. Currently not done.

- 242 -

7.8 tty_io.c FEfF

98 #/

/%

* NI G R H S rh A SRR o T8 A8 R] DASE IR

* h tty Zumai e ZumR M. HATIe B A XA .

*/

/) tty ZIPBAHIHIEESR . rs o, s {E4RAEIPAH, T HUAR 1305 G2 BA A ki
99 struct tty queue * table list[]={

100 &tty table[0].read q, &tty table[0].write q, // ¥H|E &, 5o s bt .
101 &tty table[1].read q, &tty table[l].write q, // PATH 1 &Kk, 5o ASHuhE .
102 &tty table[2].read q, &tty table[2].write q // PATH 2 &Kunit. 5o AS kL.
103 b

104

/11 tty KImAIaa ek .
// WIgRAR B O e R il & 243
105 void tty init(void)

106

107 rs_init(); [/ WIAEWHRAT R PR AT O 1 0 2. (serial.c, 37)
108 con init(); // Wl eisE G %, (console. ¢, 617)

109 }

110

[/ tty B L AT AL B R L

/) BH: tty - M tty K idaREr; mask — 155 BERAL
111 void tty intr(struct tty struct * tty, int mask)
112 {
11 int i;

/) Wk tey PrEA S /AN TEET 0, WERH.
if (tty—>pgrp <= 0)
return;
/) FRATEEAL, 11ttty ML FTA RS RIEHR 2 M .
for (i=0;i<NR TASKS;i++)
/) WMFZIESTRE AN, IFHHATET tty A5, W E ISR E 1E 5 nask.

—
—
(@]

—
—
[op}

—
—
-3

118 if (task[i] && task[i]->pgrp==tty->pgrp)
119 task[i]->signal |= mask;

120)

121

/177 QR BN 22 v X D)L g R N AT v B) R R IR 28
// ZH: queue — FREBNIIIIIRET
[/ BEREAE BN Gz o DX e = 455 I 0 R £

122 static void sleep if empty(struct tty queue * queue)
{

—
w

2

—
(IS

cli(; /] K.
[/ F TR B 5 BAL BT HARE MBS ZE ot XS, AR HERERE A] R T IEIRR S, JF ik
// BB ERESEAT Fi o 1 % HERE

125 while (!current—>signal && EMPTY (*queue))

126 interruptible sleep on(&queue—>proc list);
127 sti(); // T

128 }

129

/1] 25 BNB G X35 Lk 3R 3 N R A I P B IR 25
// Z%0: queue — FREBANIIIFREL
// REREAEAEBAA 25 vh X o 5 N FH I R 4

130 static void sleep if full (struct tty queue * queue)

- 243 -

7.8 tty_io.c FEfF

131 {
/) ABABNGZ I AN, R ER H
132 if (IFULL (*queue))
133 return;
134 cliQ; // K.

// UnRBERE AT AR 5 5 EEAL B LA S G2 i X rb 2 PR AR XA RE <128, AR R N AT PP T IR A 5
/) ARSI R A A Fa e 4) i3 R

135 while (!current->signal && LEFT (*queue)<128)

136 interruptible sleep on(&queue—>proc list);
137 sti(); // T

138 }

13

/] ER
// IR s BA A 22 X 2 LB R 3R N] e T R R R A
140 void wait for keypress (void)

{

—
(IS
—

—
(IS
Do

sleep if empty(&tty table[0]. secondary) ;

—
(IS
W

}

4

/111 SRR R P A
/] BFRE tty e BAFIZE R X IR R S O G B R AR CE Sl Bh A B Oy =R BA A1)
/) BH: tty - fRE L) tty it

145 void copy to cooked(struct tty struct * tty)

—
(IS

146 {
147 signed char c;
148
// IS vty W BABI R R AN I HA B A S o X R, WG $AT T 2R .
149 while (!EMPTY (tty->read q) && !FULL (tty->secondary)) {

[/ MBI RACE — 753 ¢, FFHi#RTaE -
150 GETCH(tty->read g, c);
// TN TRF, R AR bR ST A B
/) WMRAZ TR RIAESRT CR(13), W: 25 IR 3 44T hR & CRNL "B IIPHRE i 7455 e 46 R AT 45 NL (10)
// AW RS H ZEAR S NOCR ‘AL, W ZBZ T4, AR AL & 745
if (c==13)
if (I_CRNL(tty))
c=10;
else if (I NOCR(tty))
continue;

(e}

ol el
1 |01 |01
W DD |—

—
1
(IS

—
()]
(Sa]

—
(Sx
»

else ;
[/ AR T AT R BATAT NL (10) I HAAT e M 245345 NLCR EAZ, WPRFILAH R 44T CR(13) .
else if (c==10 && I NLCR(tty))
c=13;
[/ WK E NG ERE UCLC BAL, WP X R4 NS 45 o
159 if (I_UCLC(tty))
160 c=tolower(c);
[/ IMRARBAARE R IE (RO BbRZR CANON EA7, WIHEHT LT A3,
if (L CANON(tty)) {
// WRAZ TR A O TR KILL (CU) , 3EA T B4 AN AT AL
162 if (c==KILL CHAR(tty)) {
163 /% deal with killing the input Iline #*/ /% WIRHIANATALFE */
// IRty HEASIANAS, B A B A S P R S — AN AR AT NL(10) , B TR SO 4 N4
// D)y WUAEIRFAT T HARHS
164 while (! (EMPTY (tty->secondary) ||

—
(S)]
2

—_
co

5

—_
—_

- 244 -

7.8 tty_io.c FEfF

165 (c=LAST (tty->secondary))==10 ||

166 c==EOF CHAR(tty))) {
[/ GRAHA AR K ECHO AL, A #5 PR HI 7T (H<32) , MIFE tty BIS PASI RN R
// T4 ERASE. PN —AMERR 74T ERASE, I HUHH X tty 95 AL

167 if (L_ECHO(tty)) f
168 if (c<32)
169 PUTCH (127, tty—>write q) ;
170 PUTCH (127, tty—>write q) ;
171 tty-Dwrite(tty);
172 }
// ¥ tty SHBVBASSKARE R 1.
173 DEC (tty—>secondary. head) ;
174 }
175 continue; // ZREEEIBOFALEIILE FAT
176 }

// W R R N B ¥ - 7F ERASE (CH) , HB4:
177 if (c==ERASE CHAR(tty)) {

[/ A ety BERBIAZI NS, s Holem A PR AT NL(10) , BE R SCPFE AT, AR ib
/] FETAT

178 if (EMPTY (tty—>secondary) ||

179 (c=LAST (tty->secondary))==10 ||
180 c==EOF _CHAR (tty))

181 continue;

[/ WERAA R FRE ECHO AL, A PR RIEHI 74T (H<32) , WITE tty KE BTN EERR
// F4F ERASE. IO —MEER 74T ERASE, JF HLIHHTIZ tty IS %L

182 if (L_ECHO(tty)) {
183 if (c<32)
184 PUTCH (127, tty—>write q) ;
185 PUTCH (127, tty—>write q) ;
186 tty—write(tty);
187 }
/] Kty HEBIBASSLERET FIR 175, AREEALBHE AT .
188 DEC (tty->secondary. head) ;
189 continue;
190 }
[/ MRAZ T RRAF LT CS), WIE tty 47 10hRa, GRERAb BRI & 745 .
191 if (c==STOP_CHAR(tty)) {
192 tty—>stopped=1;
193 continue;
194)
/) MR TR RAF TR CQ) , MR tty (5 1EFRE, RELAE S 74T .
195 if (c==START CHAR(tty)) {
196 tty—>stopped=0;
197 continue;
198 }
199 }

/) EHRANEAFREEP ISIG AREELL, MAEWE] INTR. QUIT. SUSP 8k DSUSP FRFhT, 752 N iEFE
[/ PN S .

200 if (L_ISIG(tty)) f
[/ WMFAZ TR RETPRT CO) A S e R A IR A TP W S, IR B — 4.
201 if (c==INTR CHAR(tty)) {
202 tty intr (tty, INTMASK) ;
203 continue;

- 245 -

7.8 tty_io.c FEfF

204 }
[/ WMFAZ TR RETPRT O\, A S R IR AR A S, IR B — 4.
205 if (c==QUIT CHAR(tty)) {
206 tty intr (tty, QUITMASK) ;
207 continue;
208 }
209 }
[/ WAL TR AT R NL(10) , BEE SR RT EOF (D), FhZZni BB AR 80D 1. [22]
210 if (c==10 || c==EOF CHAR(tty))
11 tty—>secondary. datat+;

// IR AHBE AR A P A AR ECHO AL, TRA, WERTATZHATAT NL(10), WPHFHATAF NL (10)
// AEERT CR(I3) N tty BRI Zerp X b s WA P AF R 74T (P AHEC32) IF FLIRLR P 7 A bR
// ECHOCTL &4z, WPKFARF 7 FIFRF c+64 N tty HAFIH (RIS Box"C HEE) s MK %7 5F
// EATIN tty BB\ . smJa % tty 5 EAE w5

212 if (L BCHO(tty)) {
213 if (c==10) {
214 PUTCH (10, tty—>write q);
215 PUTCH (13, tty—>write q);
216 } else if (e<32) {
217 if (L_ECHOCTL (tty)) {
218 PUTCH(” 7/, tty—>write q);
219 PUTCH (c+64, tty—>write q) ;
220 }
221 } else
222 PUTCH (¢, tty—>write q) ;
223 tty—write (tty);
224 }
/] BZTF RN B S
225 PUTCH (¢, tty—>secondary) ;
226 }
// WAL B P A I RS (R AT 5D o
227 wake up (&tty—>secondary. proc list);
228 }
229

)ty iR
// ZH: channel - Fixss; buf - ZWXIE: nr - AREEFITEL
// R BT

230 int tty read(unsigned channel, char * buf, int nr)
231 {
232 struct tty struct * tty;
233 char c, * b=buf;
234 int minimum, time, flag=0;
235 long oldalarm;
236
[/ ARRA Tinux WEEI 20 A 3 N1 IE, aalaEdls (0) H & 1) A %8505 2(2) .
[/ FTUMETR T 2 &5 MR dRER . BT ECY R A RN T 0 1.
237 if (channel>2 || nr<0) return -1:
// tty FREHE IR SR tth table P tty 4544,
238 tty = &tty table[channel];

// R E SR A HERE JSUE IR, SRR AR) A4F VT TME A1 VMIN B B 7 A5 45 11 X0 N i AL
/) AEAERNEAE T, XM N s I E . MIN om0 T A, W ZE U e D> T4 4
// TIME 32— A+ op 22— B ik i (e

/B B RR H (HE) S R (D -

- 246 -

7.8 tty_io.c FEfF

239 oldalarm = current—>alarm;

/) FFRCE AR € A time FIFGZE 5D U T A7 AN 42 minimum.
240 time = 10L*tty—>termios.c _cc[VTIME];
241 minimum = tty->termios.c cc[VMIN];

// BRBEE T BN E NE time (HER A BCE BB minimum, JBALER R B> FATEE
// I SRR S 2R A B LUK L minimum=1.

242 if (time && !minimum) {

243 minimum=1;
[/ R BERE JEUE RS O B time+ 4 HiT AR GEI TR/ T RERE S50 INHEL TG, DU H T B R A I
[/ AHN time+ HHT R LM], JFE flag brik.

244 if (flag=(loldalarm || time+jiffies<oldalarm))
245 current—>alarm = time+jiffies;
216)
/) I RBCE D B RO AT, A AR TR R B) - R
247 if (minimum>nr)
248 minimum=nr;
/) AR OO0, EFA AT LR HRAE
249 while (nr>0) {

)/ R flag AN O (BIEERIEE IR 0 B0 time 4 T AR I TN THEAR B R i) I HLIE R AT 5
// WS STGALRM, WA A7 HERE) 52 I 45 5 I rH T I 34

250 if (flag & (current->signal & ALRMMASK)) {
251 current—>signal &= ~ALRMMASK;
252 break;
253 }
/) WY TR AR S A, BB, R ([F] 0.
254 if (current->signal)
255 break;

O/ RN AT R IAT) %, s B T MR T LR B BAT b AR 0 LUK
// GG b BA A A R A 6> 20, JUIRE N W] R T IRAR S, R [R5 AR Ab B

256 if (EMPTY (tty->secondary) || (L _CANON(tty) &&
257 Itty->secondary. data && LEFT (tty->secondary)>20)) {
258 sleep if empty (&tty—>secondary) ;
259 continue;
260 }
// PATLLU T EAE, H3 nr=0 505 58 B2 RAS 25,
261 do {
/] WHBV T AB AT co
262 GETCH (tty—>secondary, c) ;
[/ WA TR SR S5 AT (D) B 23 AT AT NL(10) 5 W4 Bh 2t A5 7 4500k 1o
263 if (c==BOF CHAR(tty) || ¢==10)
264 tty—>secondary. data—;
[/ WMFAR TR RS SR ART (D) H HMERI bR B BN, IR /74, HaRH.
265 if (c==EOF CHAR(tty) && L CANON(tty))
266 return (b-buf) ;

/) A WPEZFFFION P 8 Beg2 v X buf v, SREEARFEOR 1, WEREEE A3 0, R e R En .
267 else {

268 put_fs byte(c, b++);
269 if (!--nr)
270 break;
271 }
272 } while (nr>0 && !EMPTY (tty—>secondary)) ;
// R E RHE time A4 0 FF H RO AR S B A B AEMEEE) , A4
273 if (time && !L CANON(tty))

- 247 -

7.8 tty_io.c FEfF

// U SR BERE JEUE IR O B time+ 4 il AR SEIN [(/I T~ JE R JU s IR AR5, DA B 0 A o I
[/ K time+ T RGN F], JFE flag bRk 17 ULEHERE) 52 IR 4% T 300 AR i 2 IR

274 if (flag=(loldalarm || time+jiffies<oldalarm))
275 current—>alarm = time+jiffies;

276 else

277 current—>alarm = oldalarm;

/) IR IO RR A EAL, A RA LR 1A TR WEA . 50 S HEOR T o8 T b 2
[/ SRR FAF G Wt A3 h

278 if (L_CANON(tty)) {
279 if (b-buf)
280 break;
281 } else if (b-buf >= minimum)
282 break;
283 }
// AR N 55 TR JUE INHE .
284 current—>alarm = oldalarm;
/) AR R S I HBA EBUE M 745, MR [S GREIND .
285 if (current—->signal && ! (b-buf))
286 return -EINTR;
287 return (b-buf) ; // R IE] U AT
288
289

Tty BEE.
/) 2% channel - F&& S, buf - EMKIEL: nr - E595%.
/) JRIEIEE TR

290 int tty write(unsigned channel, char * buf, int nr)

291 |
292 static cr_flag=0;

293 struct tty struct * tty;
294 char c, *b=buf;

295

[/ ARRA Tinux WAZKI S8 HAT 3 A3, b2 fEdil G (0) . o 2 1 (1) A %K 2(2) .
[/ BTUMERTR T 2 M7 ise S H O ARER . BT E8Ca R BAGE N T 0 /.

296 if (channel>2 || nr<0) return -1;
// tty FREMHR I TR SR tth_table KA tty 4544,
297 tty = channel + tty table;

) FRRE A AN TRRETAEL, BT BT nr KT 0 IR AR AT AR R AL B
298 while (nr>0) {
// BARIEI tty BSRASY T, 0 AR N T rp T BRI AS

299 sleep if full (&tty—>write q);
// WRCHETHEREA R T A, R, IR [F] 0,
300 if (current->signal)
301 break;
/) HEGHTEO0 I H tty B ASUANEIN, JEIAIAT LA 1.
302 while (nr>0 && !FULL (tty—>write q)) {
/) W AR BEN AR 715 e
303 c=get fs byte(b);
// T R 2t RS AR AR A T AT B AL BEAR RR OPOST A, WIHRAT T Z1) 40 Hi I AR B A
304 if (0_POST(tty)) {

/) WHRAZ AR MR \r (CR, 13) I B ZEFF AT R bR 5 OCRNL AT, MIPREZ T 1 3 e e A T 75
// ’\n" (NL, 10); NG SAZ 7R 2 HAT47 \n” (NL, 10) 3 H #4755 01 4T BEAr & ONLRET & A7 /5%,
/) WPZ R B ETF \r” (CR, 13)

305 if (c=="|r’ & 0 CRNL(tty))

- 248 -

7.8 tty_io.c FEfF

306
307

W
o
e

w
—
o

w
—_
—_

w
—_
[N}

w
—_
wW

w
—
S

wW
—_
1

w
—
»

Ed s
c="\n";

else if (c=="|n" && O NLRET (tty))

Ed s
c="\r’;

[/ WREZ TR RIATRY \n' IF LLAARE cr_flag WATEAL, HATH P 44047 hR & ONLCR BALIIE,

/) WK cr flag BAL, I [FIEFRFTRNG NG F . SRIGLREEA LT —
if (c=="|n" & !cr flag & O NLCR(tty)) {

cr flag = 1;

PUTCH (13, tty—>write q);

continue;

}

[/ RN G R ERRE OLCUC BALII UL, AR 7 AT 8 RS 745

if (0 LCUC(tty))

c=toupper (c) ;
}

/) P BAR SR RET b ATEE 13 S T HOR 1 BAL er flag B, JRRRIZTFAVBN tty

// HEAFIH
b++; nr——;
cr flag = 0;
PUTCH (c, tty—>write q) ;
}

[/ BTG, WE SO, WEPHATERR . XN tty FISREL HIEA 7
5

[/ WIEERFE BANBUAN, BT LA R, e LPATH e %
tty—write(tty);
if (nr>0)
schedule () ;

return (b-buf) ; // RIS N EATHL

}

JS*
* Jeh, sometimes I really like the 3&6.
* This routine is called from an interrupt,
* and there should be absolutely no problem
* with sleeping even in an interrupt (I hope).
* Of course, if somebody proves me wrong, 1’11
* hate intel for all time :-). We’ll have to
* be careful and see to reinstating the interrupt
* chips before calling this, though.
*
* I don’t think we sleep here under normal circumstances
* anyway, which Is good, as the task sleeping might be
* totally Innocent.
*/
/%

s), A7 I P FAFIREXK 386, % 7 AL FPIT AR PR e R R I, B
PR ARERRE e b ML th A2 80 AT) L (A) o 8%, WA AR o
* B, WATKMMR intel —2E 7O, (HZLATLAUVNG, FERHIZ TP Z 1T

* LI T

*

s PNV FEIE HPREE T 23 A AR LRI, SXFEARAF, DR AE S5 IR 58 4 AR R o

*/
//// tty HWTALEE R R A - AT tty AL,
/) ZH tty - $EEN tty &S (0, 18(2) .

- 249 -

e

’

7.9 tty_ioctl.c &P

// BT E tty ZamBAFISE i X R A S OIS G B A IR AR IR Sl B A B GIRYE AR BA A1) Hh
/) AER TR R (rs_io.s, 109) FEEEL K (kerboard. S, 69) Hiff .
342 void do_tty interrupt(int tty)
343 {
344 copy to cooked(tty table+tty);
345 }
346
/1] PR VIR . &, ALY A& .
347 void chr_dev_init (void)
348 {
349 }
350

783 HEER
7.8.3.1 #=HIZFH VTIME. VMIN

AEAEMYERGCR, X AME I E N . MIN RoR24 TR S e, 23 i > 774, TIME
N2 T RHE . MIX NI E R, R SRR, EHR R DR N, RIGAE
PLEZHL MIN AN FAFEE I TR TIME (RS2 G — N AP A . WA E T MIN, HBATEEE MIN A
FREZ AR A IR M. WRAGRE T TIME, WAL EIRD— NP AFEE @ I 5 SR 2
R WERPAN AT R, AR R L ZIR (], A5t H AT e 15 1R8] 2 WL termios.h 3¢
4o

7.9 tty ioctl.c 2%

7.9.1 DigEHEIA
A TR A, Sl T g CRGMAD tty_ioctl().
7.9.2 (KELERE
BF% 7.8 linux/kernel/chr drv/tty ioctl.c F&JF

1/

2 * linux/kernel/chr drv/tty ioctl. c

3 *

4 * (C) 1991 Linus Torvalds

5 #

6

7 #include <errno.h> /) EERTERCE. E RGP EM A S . (Linus M minix H5|REH)
8 #include <termios.h> // i N R ECK SO . e A A I S

9

10

#include <linux/sched.h> // WREEREFLICH, & X TAES S50 task_struct HIUHIES 0 %N,
[/ B IR TS FERE A i N ST g pR B TR A .

#include <linux/kernel.h> // WHIGKSCHE. & —Se A% H e 801 J5UE & o

#include <linux/tty.h> /)ty SK3CHE, ECTHK tty do, HATIEAE IS EL HE.

—_
—_

#include <asm/io.h> [/ io SkICAE. s SCHEAFg DN/ fn 20 i]
#tinclude <asm/segment.h> // BEEELSCMF. & T A KRBT AE A BAE B A 2T g R 20
#tinclude <asm/system.h> // REELICF. @ X T E BAE SRR TE/ T TSR AN 0G0 %

Sl =SS

—
-3

[/ IR R R T (BN RECE AL o PRFR 5 R R R - B NG R 2 WA 3R 5 I 30
static unsigned short quotient[] = {

0, 2304, 1536, 1047, 857,

768, 576, 384, 192, 96,

1S < I

- 250 -

7.9 tty_ioctl.c &P

21 64, 48, 24, 12, 6, 3
22 };

/11 AR
[/ BH tty - BImRTNR tty BE S .
// AEBREUBAT b s DLAB (SR 25 A7 b0 7) AL UL T 38 1L ¥ 11 0x3£8 A1 0x3£9 [UART 7353 "5 A
/B ER R AR N R
24 static void change speed(struct tty struct * tty)

25 {
26 unsigned short port, quot;
27
[/ T O &, Hotty SR EAY data FBUE IR 2 B AT I H 5 (0x3£8 B 0x2£8) .
28 if (! (port = tty—>read q.data))
29 return;

/) Wty [termios SRR RIBURRAS S T B T DR T, SR R S R
/X RIS AR IR (B . CBAUD J2 428 AR by i 4 P Btk R 6 e i

30 quot = quotient[tty—>termios.c_cflag & CBAUD];

31 cli(; [/ R,

32 outb_p (0x80, port+3) ; /* set DLAB */ // 165G RE BRI E PR DLAB.
33 outb p(quot & 0xff, port) ; /% LS of divisor */ // BN LT,

34 outb_p(quot >> 8, port+l); /* US of divisor */ // Wi A&

35 outb (0x03, port+3) ; /* reset DLAB +/ // S A7 DLAB.

36 stiQ; // T

37}

38

/) R Ly A,
// B gueue — FEEMEMHIAFITEE .
/) AT SR TR, T BN 2 X (520 I H 9.

39 static void flush(struct tty queue * queue)

40 {

41 cli();

42 queue—>head = queue—>tail;
43 stiQ);

44)

45

/1] ER R RIE S
46 static void wait until sent(struct tty struct * tty)
47 {
48 /% do nothing - not implemented #/ /* fIA#WML — IEARSLIL */
49 }

//// %i¥% BREAK #5517 o
51 static void send break (struct tty struct * tty)
{
/* do nothing — not implemented */ /* I AHRVA — BRI */
}

//// W termios GiRAE
/] ZH: tty - FREAE tty ZilTRER: termios — HIHURIX termios G5 SE MR X FREL S
// RIANO .

56 static int get termios(struct tty struct * tty, struct termios * termios)

57 {

58 int i

- 251 -

7.9 tty_ioctl.c &P

59
[/ EHERUE— T H T ISR X FRE TR AR OR AR, AN I L Y AT
60 verify area(termios, sizeof (ktermios));
[/ SHFRE tty SR termios S5ME B EIH P termios ZiZMIX
61 for (i=0 ; i< (sizeof (*termios)) ; i++)
62 put fs byte(((char *)&tty->termios)[i] , i+(char *)termios);
63 return 0;
64 }
65

/1)) B A termios Z5H1E K.
/) BH tty - fRER) tty EifTEREN; termios — P HEEIX termios Gik4RE!
// RO .

66 static int set termios (struct tty struct * tty, struct termios * termios)

67 {

68 int i;
69
J/ ESEEHIH P EIEX T termios 5 E B BIFRE tty ik,
70 for (i=0 ; i< (sizeof (*termios)) ; i++)
71 ((char *)&tty—>termios) [i]=get fs byte(i+(char *)termios) ;

/) HPHTTRECAEM T tty (AT DRI, FTLURAE termios Z5H T (M FE BB ¢ cflag
/) ABBCHRAT IS UART [RIAE G RS 26 o

72 change speed(tty) ;
73 return 0;

74}

75

//// BEEL termio g E R .
/) BH tty - FRE &l tty GiHFREN: termio — A EEIX termio RN IX HREL .
// RIAL 0,

76 static int get termio(struct tty struct * tty, struct termio * termio)

77 |

78 int i
79 struct termio tmp termio;
80
/) EHERUE— T T ISR X FRE TR W AR OR AR, AN I L Y AT
81 verify area(termio, sizeof (¥termio));

// ¥ termios GRS RAZHIE] termio kb H RN T H AP BARS LM AT He 4, thifl
// M termios FIKEEHCRAFAHN termio FIRHEHEAL.

82 tmp_termio.c iflag = tty—>termios.c iflag;
83 tmp_termio.c oflag = tty—>termios.c oflag;
84 tmp_termio.c cflag = tty—>termios.c cflag;
85 tmp_termio.c 1flag = tty—>termios.c 1flag;
// PFhEERIN ¢ line 1 ¢ ce[] B 524 AR K o
86 tmp_termio.c line = tty—>termios.c line;
87 for(i=0 ; i < NCC ; i++)
88 tmp_termio.c _ccli] = tty—>termios.c cclil;
/) BJEEHIFRE tty ik termio £ME B BIH T termio S5 ZEMIX
89 for (i=0 ; i< (sizeof (*termio)) : i++)
90 put_fs byte(((char *)&tmp termio) [i] , i+(char *)termio);
91 return 0;
92 }
93
94 /*

95 * This only works as the 386 is low-byt-first

- 2562 -

7.9 tty_ioctl.c &P

9% #/
/%
* R termio TEE BRHUNAE 386 (KT W 7ERTHI =0 F ol H o
*/
/)] BCE A termio SR B
/) BH: tty - FREL T tty £ 1"]?‘5% termio — M H#EX termio it FHE
/) WP PIX termio F B HI B A termios &5, IRE O .
97 static int set termio (struct tt y_struct * tty, struct termio * termio)
98 {

99 int i;
100 struct termio tmp termio;
101
// ESREHIH P EHEIX P termio 458045 R BIIEI termio 454 .
102 for (i=0 ; i< (sizeof (*termio)) ; i++)
103 ((char *)&tmp_termio) [i]l=get fs byte(i+(char *)termio) ;

// T termio g5 ME BEHIE] tty 19 termios &5k, HAEE N T H A R SRR IHATH 4,
// WHIM termio MR IEHERTYEL Y, termios HCHEERTY,

104 *(unsigned short *)&tty->termios.c iflag = tmp termio.c iflag;

105 *(unsigned short *)&tty->termios.c oflag = tmp termio.c oflag;

106 *(unsigned short *)&tty->termios.c cflag = tmp termio.c cflag;

107 *(unsigned short *)&tty->termios.c 1flag = tmp termio.c 1flag;
// PRSI ¢ line il ¢ cc[] 7B 5E 4 AR K]

108 tty—>termios.c _line = tmp_ termio.c_ line;

109 for(i=0 ; i < NCC ; i++)

11 tty—>termios.c ccl[i] = tmp termio.c cclil;

// HPARECBL T tty BIHAT PRSI REZE, P DAARYE termios S5 h i Bl bR & 4R ¢ cflag
// B ECRAT IS A UART AL R 5

111 change speed(tty) ;
112 return 0;

113 }

11

//// tty ik 1 ioct] B,
// BH: dev - WS emd - ioctl W4 arg - HAESEIRE .

115 int tty ioctl(int dev, int cmd, int arg)

(@]

i
{

—_
—
[op}

—
—
]

struct tty struct * tty;
/) EHEH tty B IRR T IR TR T2 5 (tty &), WIHERRR tty PRI iR S WREER
[/) tty TR SRENE, RIS A 6%, WRIARER 1% ioct] T, HESIENL.
if (MAJOR(dev) == 5) {
dev=current—>tty;
if (dev<0)
panic (“tty ioctl: dev<0");
[/ BN EB NS5 P PR
122 } else
123 dev=MINOR (dev) ;
[/ FERATAT DGR 0 (il Zam) « TGR I 1 2« 20 H 2 %) o
// ik tty $8 R R 15 £ T tty 45k
124 tty = dev + tty table;
// KR tty [doct] My AT A AL B
125 switch (cmd) {
126 case TCGETS:
/BRI, 2835 termios S5 AE S
127 return get termios(tty, (struct termios *) arg);

—_
—
co

—
—
©

—_
[\
o

—_
—_

[N

- 253 -

7.9 tty_ioctl.c &P

128 case TCSETSF:
// {EVWE termios WIfF T, 752 /e A th AZ b P s b B 58, JF HRIHT G) Fas A BA %1
// HWCE.

129 flush (&tty—>read q); /#* fallthrough */

130 case TCSETSW:

)/ AR termios [EZ T, B LS AR AT P T AT SR AR B R o X TS B K
[/ e I DL, B B XA

131 wait until sent(tty); /* fallthrough */
132 case TCSETS:
// BEEAN L termios 45 RIS B
133 return set termios(tty, (struct termios *) arg);
134 case TCGETA:
// BN 2 termio G544 S B .
135 return get termio(tty, (struct termio *) arg);
136 case TCSETAF:
// LEWE termio MME T, 77225655 BAZ b B B Ak B 5, FF HORGET G) Far AN BA A1
// FHiRE.
137 flush (&tty—>read q); /#* fallthrough */
13 case TCSETAW:

[/ AEWE A termio RN HT, 77 225655t BAZ h Bir A B0 Ak 3 58 REJRY) « X T Z 3L
[/ st GO, AR B R X R

139 wait until sent(tty); /* fallthrough */ /% YRE:HAT */

140 case TCSETA:
// BB AN 2 termio G584 F S B

141 return set termio(tty, (struct termio *) arg);
142 case TCSBRK:
/) SERFRTH BAAI AL B g e (), RS EE S 0, WIKIE— break.
143 if (larg) {
144 wait until sent (tty);
145 send break (tty) ;
146 }
147 return 0;
148 case TCXONC:

/) TP /AT IR . WERSHUE R 0, MR B2 1, WEFIF SR W2, Wik
/7 BIN WA 3, WHESHT A HRER RN o

149 return —EINVAL; /% not implemented */ /% ARSZI */

150 case TCFLSH:
//WET B i A e il CISUEIE e A e B . RS HOE 0, WIREET G 25 T NBAS s s 1,
// W BB s a2 2, DuE e N A g H BA A o

—
(Sx]
o

151 if (arg==0)
152 flush (&tty—>read q);
153 else if (arg==1)
154 flush (&tty—>write q);
155 else if (arg==2) {
156 flush (&tty—>read q);
157 flush (&tty—>write q);
158 } else
159 return —EINVAL;
160 return 0;
161 case TIOCEXCL:

// VS AT S it T AR
162 return —EINVAL; /% not implemented */ /% FRSZI */
163 case TIOCNXCL:

- 254 -

7.9 tty_ioctl.c &P

[/ B R AT L L AR K

164 return —EINVAL; /% not implemented */ /% FRSZI */
165 case TIOCSCTTY:
/) BB tty AFEHIL. (TIOONOTTY — 241 tty il 2&) .
166 return —EINVAL; /% set controlling term NI #*/ /% % B 35540 NI */
167 case TIOCGPGRP: // NI — Not Implemented.

// SR E AR BRI AL ide ESRIRUE A P XKL, RJA I tty 1 perp TBCEIHI T GET X

168 verify area((void %) arg, 4);

169 put_fs long(tty—>pgrp, (unsigned long *) arg);
170 return 0;

171 case TIOCSPGRP:

// BB R AR AR id.

172 tty->pgrp=get fs long((unsigned long *) arg);
173 return 0;
174 case TIOCOUTQ:
/IR Al H BA RO RIS HH) AR 2. SR UE T G XK, AR SIS T AR
175 verify area((void *) arg, 4);
176 put fs long (CHARS (tty—>write q), (unsigned long *) arg):
177 return 0;
178 case TIOCINQ:
/IR [Pl N A O ARSI AR B UE S G XK, AR IS T SRR
179 verify area((void *) arg,4);
180 put fs long(CHARS (tty—>secondary)
181 (unsigned long *) arg);
182 return 0;
183 case TIOCSTI:

[/ WL o 1% A MR W TR EE A S, IHEEREX T AR e A ERENET . T i

// TR % B AT PR B B AT S nT AR
184 return —EINVAL; /% not implemented */ /% FRSZI */
185 case TIOCGWINSZ:

// B AR AT HR/ME R (U, termios. h W) winsize 4544)

186 return —EINVAL; /% not implemented */ /% FRSZI */
187 case TIOCSWINSZ:

// BEE AR D RMER (W winsize &58) .

188 return —EINVAL; /% not implemented */ /% FRSZI */
189 case TIOCMGET:

// 1R[] modem IRAFEH G U HPIRAS LR AR E S (0 termios. h 1 185-196 17) &
190 return -EINVAL; /% not implemented */ /% ARSZI) */
191 case TIOCMBIS:

// BB modem IRASFEH T ZHPIRA (true 5L false) o
192 return -EINVAL; /% not implemented */ /% ARSZI) %/
193 case TIOCMBIC:

/) BALRA modem IRASFEHI I L PR
194 return -EINVAL; /% not implemented */ /% ARSZI) */
195 case TIOCMSET:

// BB modem IRASTIZEHPIRAS o WERKE—LURFAZ B AL, W) modem X M IRPIRAS 5 | 2644 B A 3L
196 return -EINVAL; /% not implemented */ /% ARSZI) %/
197 case TIOCGSOFTCAR:

/) BERURA R AT IR & (1 - P 0 - OKHD .

198 return —EINVAL; /% not implemented */ /% FRSZI */
199 case TIOCSSOFTCAR:

/) BCEBAREREATIRRE (1 - JFEs 0 - OKHD .

200 return —EINVAL; /% not implemented */ /% FRSZI */

- 255 -

7.9 tty_ioctl.c &P

201 default:

202 return —EINVAL;
203 }

204)

205

793 HEER
7.93.1 BERERSERET
WA = 1.8432MHZ /(16 * SRR T) o FEFEHP s 2 5 R BR T 06 6 2R L F R s

R BFRSRERERFHEE

. PRy 2R 1 . B 1
B sB.LSB | aorE | ¥ TMSBLLSB | 21 H
50 | 0x09,0x00 2304 | 1200 | 0x00,0x60 %
75 | 0x06,0x00 1536 | 1800 | Ox00,0x40 64
110 | 0x04,0x17 1047 | 2400 | 0x00,0x30 48
134.5 | 0x03,0x59 857 | 4800 | 0x00,0x18 24
150 | 0x03,0x00 768 | 9600 | 0x00,0x1c 1
200 | 0x02,0x40 576 | 19200 | 0x00,0x06 6
300 | 0XOL,0x80 384 | 38400 | 0x00,0x03 3
600 | 0x00,0xc0 192

- 256 -

H8E H b3 25 (math)

8.1 #Lik
FIFE 8.1 linux/kernel/math BE
B KN BRIG 5 oaETE] (GMT) {iHA
Makefile 936 bytes 1991-11-18 00:21:45

math emulate.c 1023 bytes 1991-11-23 15:36:34

8.2 Makefile 314

8.2.1 IigetaiA
math H 5 N7 1) g 8 30
8.2.2 KELERE
B 8.2 linux/kernel/math/Makefile 3T

Makefile for the FREAX-kernel character device drivers.

Note! Dependencies are done automagically by 'make dep’, which also
removes any old dependencies. DON'T put your own dependencies here

| [o [O1 |v> [DO [—

FREAX (Linux) P % 7455 5 7% DR SO FE 7) Makefile SCAH.
TR K R make dep’ HEIHEATIY, B4 BB ERIERIKIHE . AEIERE S

#

#

#

#

#

unless it’s something special (ie not a .c file).

#

#

#

O OC RS BBEX B, BRAE AR SO (B EPAE—AN ¢ TG R .

8
9 AR =gar # GNU f) —HEHISCRAEBRE 7, T80 . B SR S IR SCA sl T

10 AS =gas # GNU [V 4nRE)F.

11 LD =gld # GNU [fEHFLT.

12 LDFLAGS =-s —x # HEMFIAMSE, —s St ST A Ira £ 55 e —x BRI /AT
13 CC =gcc # GNU CiEigmiFae.

AT C PR IE . Wall SR A s S E R -0 kD, e AR K BEFPAT I 7] 5
—fstrength-reduce UAIEHIATANND, HEERF ALK —fomit—frame—pointer 45 W& ORATAN 2
MHESLIRE: —fcombine-regs B IFATffdn, /DA RIIMH; —finline—functions ¥4 A]
RN RS IR AN P —mstring—insns Linus H CHMMRAETR, LS AT
—nostdinc —I../include AMi BB AR P IS SO, AR FEE H i (. /.. /include) o
CFLAGS =-Wall -0 —fstrength-reduce —fomit-frame-pointer —fcombine-regs \
—finline—functions —mstring—insns —nostdinc -I../../include
CHATCHLIET . —E HUgAT C A, XHraHaEn C F2 P T A 31 36 b 21 25 S th B b iy
ks akde e i S —nostdine —1.. /.. /include AT
CPP =gcc -E —nostdinc -I1../../include

—
(IS

—
(@a]

—
(o))

—
-3

NI AR 7R make AR TR AT HE BT A 0L ¢ SCPFRIRAE AR, s TEGRFE)T o UK dir &

- 257 -

8.3 math—emulation. ¢ &%

JR1E gee KA CFLAGS P s Mk 1iins C AL 4 ¥ Jn A RISt f5 b (=S) , T4y
IS C TR RS SO o BRIAE DL T B AL RV G R 7 SCA 44 8 it € ST 44
LB e b s Jag. —o RonIna i XA AR, s s (2i$e) & A3 H iR,
SRS e A, IRRARFT G 46, ¢ K3t

18 .c.s:
19 $(CC) $(CFLAGS) \
20 =S -0 $*k.s5 §<
FHEE BT, s WGP SCHEg B K. o HARSCHE. 22 T2 SRR Rk ar & .
21 .s.o0:
$(AS) —¢ —o $*x.0 $<
.c.o: # LB, % e XD 0 HbRSCfh. AHHTER.
$(CC) $(CFLAGS) \
-c -0 $*.0 §<

OBJS = math emulate.o & X HFr AR & OBJS.

math. a: $(0OBJS) # £ T Jouksct 0BJS R H T i dr 2% 8% H 5 math. a B30,
$(AR) rcs math.a $(0BJS)
syne

WO Lo Lo DN DD DO DO D DO DO DN
BIZIEIBIENIRISIRIER]

N FEE T UYHUT make clean’ I, MUSHAT FiHIMI@4, LERFTH G
#OERAERNSOIE. o’ R SO BR A4, IR 5 SO B AR SO, I A BRI ERAE S

33 clean:

34 rm —f core *.o0 *. a tmp make
35 for i in *.c;do rm —f "basename $$i .c .s;done
36

RS H REGIIU A TR 5 SO 2 R A S R . AR

AR AR sed X Makefile SO (RUEASCHR) HEATAREE, 4 MR Makefile

O ### Dependencies’ 17 M HIATE 4T, AR tmp make IGH S0, 4R)G % kernel/math/
Hk FIREAS C ST HAT gee AL BRERAE.

M br S VR TUAL BERE P A R BN H AR SCAFAHOCHE AR, I FOX LSR5 make 512

5T RN SO, TIACBRAR 4 Y —) make RE, G4 SRS AR AH N YR AR SO B bR

SR A4 N B LA OC R —— U S LS I Sk SR AR o HE T 3 5 SR AR A I 2 11)

SCMF tmp_make T, AR JE R I SO EGHT I Makefile S

37 dep:

38 sed ~ /\#\#\# Dependencies/q < Makefile > tmp make

39 (for i in *.c:;do echo -n "echo $$i | sed s, \.c,\.s,” 7 ”7: \
40 $(CPP) -M $$i;done) >> tmp make

41 cp tmp make Makefile

42

;E ### Dependencies:

8.3 math-emulation.c I2JF

8.3.1 Digeaik
P AL PRS0 AL BRACRY SO o AR 7 H TR BAT SEIN £ 27 AL BE2S (1) 0 LAY o A ST T ik
PRES KA ST W R FH AN C pRE. math_emulate(Vf)AEH R T AL St AL PRES PR A0, X HERE
HUE R RS .
8.3.2 R#EE
B3 8.3 linux/kernel/math/math emulate. c }2/F

- 258 -

8.3 math—emulation. ¢ &%

1%
2 * linux/kernel/math/math emulate. c
3 %
4 % (C) 1991 Linus Torvalds
5 ¥
6
7 /%
8 # This directory should contain the math-emulation code.
9 # Currently only results in a signal.
10 #/
/%
* % H R BNz S HEA O EAUS . H AT 2E—ME S
*/
11
12 #include <signal.h> /)G TR E AE ST, 55 4 LU S AR e s Y
13
14 #include <linux/sched.h> // PRERFRICIE, & X TAES- 454 task struct. HIEHIESS 0 4,

// A YA IR S B0 B RSP N 2T G bR B TR R .
15 #include <linux/kernel.h> // WHZKICHF. SA7T —LE N HI BB J5UE € X
16 #include <asm/segment.h> // BHgAESLSCME. & T KRBT A2 B AR IR A I 9 R 20
17
//// AL BLES A R EL
// AR S C BRi%L, 2L (kernel/math/system call.s, 169 47).

void math emulate(long edi, long esi, long ebp, long sys call ret,

—
co

19 long eax, long ebx, long ecx, long edx,

20 unsigned short fs,unsigned short es,unsigned short ds,
21 unsigned long eip, unsigned short cs, unsigned long eflags,
22 unsigned short ss, unsigned long esp)

23 {

24 unsigned char first, second;

25

26 /* 0x0007 means user code space */

/% 0x0007 Ko ARG A%] */

// JEFEFRT 0x000F FRIRTE il iR R rh fERFF R 5 1ME=1, BIAAS M. WRBE A A7 4% cs AT 0x000F
[/ MFRIR cs — e WAL BT, EAENZARIEE, WA, BRI E cs:eip E, FERELR
/] NP TRERCATR” . RIGHEATENLRE

27 if (cs !'= 0x000F) {

28 printk ("math emulate: %04x:%08x\n\r’, cs, eip) ;
29 panic (“Math emulation needed in kernel”);

30 }

/) WO s X HERC I first A second, Sh7niX4E¥id, Fhen b Re v BT U7 H {5 %5 SIGFPE.

31 first = get fs byte((char *) ((*&eip)++));

32 second = get fs byte((char %) ((k&eip)++));

33 printk ("%04x:%08x %02x %02x\n\r”, cs, eip—2, first, second) ;
34 current—>signal |= 1<<(SIGFPE-1);

35 }

36

[/ TR AR TS R A 3 R

// AR B C BRi%L, 2L (kernel/math/system call.s, 14547),
37 void math error (void)
38 {

[/ bR TR A . (DLAESSFRRE) BRI A R hn & AR ERRETAL 7.
39 _asm__("fnclex”);

- 259 -

8.3 math—-emulation. c F&/F

[/ R EAMEEAT A B RS, W) AT R IE P AR B A T
if (last task used math)
last task used math->signal |= 1<<(SIGFPE-1);

- 260 -

FIE M ARG(fs)

9.1 #tik

ATEWS J linux A% SR ZR G0 10 SE ARSI T Bt 25 1) s 2 ph X SR Y « 72T % linux 0.11 P
KSR RSN, Linus 3222 M 7 Andrew S.Tanenbaum 1K) (MINIX #:4E R4 550y —P Gk
[22D, A TIHAH MINIX SCAERSE 1.0 hit. FRIUCAEFIATE N AR, ATRLS% 1% 5 ¢ MINIX U/ R
A ST o T S g XA A SR AT 2 I MLJ.Bach 1) UNIX #:4E Rt) CUBR[11]) 565 = 2 P 4

FIF 9.1 linux/fs BE

SR KA BEHBHEE (GMT) #i8
§] Makefile 5053 bytes 1991-12-02 03:21:31 m
g bitmap. c 4042 bytes 1991-11-26 21:31:53 m
% block dev.c 1422 bytes 1991-10-31 17:19:55 m
€ buffer.c 9072 bytes 1991-12-06 20:21:00 m
%‘ char dev.c 2103 bytes 1991-11-19 09:10:22 m
1 exec.c 9134 bytes 1991-12-01 20:01:01 m
fentl. ¢ 1455 bytes 1991-10-02 14:16:29 m
file dev.c 1852 bytes 1991-12-01 19:02:43 m
file table.c 122 bytes 1991-10-02 14:16:29 m
inode. ¢ 6933 bytes 1991-12-06 20:16:35 m
€7 ioctl.c 977 bytes 1991-11-19 09:13:05
£ namei.c 16562 bytes 1991-11-25 19:19:59 m
€7 open.c 4340 bytes 1991-11-25 19:21:01 m
€7 pipe.c 2385 bytes 1991-10-18 19:02:33 m
€3 read write.c 2802 bytes 1991-11-25 15:47:20 m
LY stat.c 1175 bytes 1991-10-02 14:16:29 m
[y super. ¢ 5628 bytes 1991-12-06 20:10:12 m
€3 truncate.c 1148 bytes 1991-10-02 14:16:29 m

9.2 BRThREHIA

ATEFER B R RO, HATIT eI BE B3 AR o S — B0 2 R i g2 e
DR BERE Sy, S TR A A A Rk 6 AT s A I iR ARy W ARER T AE buffer.c iy
SEHL; B AU RE T S R SENARZ s A SO T SO S A B WA B 1 23 A
RERBCLA R SCAEAL 5 0 3T iR i 2 =R R AT R S h Bl b AT B S A, i P A B
FIE . P E SO R T s S YRR 2 AORR R SR B RO R GER IR LV SEEL, R RO T
T KM QUL R AT RS H SRR EAF I R L o

NHE AT MINIX SRR GEFEARL Y, AR5 73R IXDYFR 230 A BE A o

- 261 -

9.2 WATRERIR

9.2.1 MINIX X &%

H AT MINIX (IR 2.0 BRI SCPE RS0 2.0 I, 652 15 BORSEZ AT, o3
CAME T . H T ABER linux A 2 MINIX SCIERZE 1.0 BiAS, FTLLx A 3 1.0 7
SR GAETR A

MINIX SCE RS L RRUE UNIX [SCPE RGEEAMIA . el 6 ANEa 4. T4 360K fyiaE, I
BB 10 oA WKL 9.1 B o

Gl R

l // i MR
—— -

~
Hidi X
A B

E9. 1 #H MINIX XHRGER—1 360K REPXHREZHINHETEE

B, 51 PE SN RS 3R]t ROM BIOS H 832 N B ATACRS A& o« (HIFARITAT B4 H] T
PEAGIFRA, B AR TSR, Xl U S AU . (BT 25 A 51 58,
TREF MINIX SO R GEM A SE

AL FA7 B B ESCAE R RETIIE R, IR RN A LI 9.2 .

F-BAAFR Y]
4 s ninodes short 17 R
S nzones short PR (BFR A X)
) s imap blocks short i A P BTy B
tﬂfﬂ?‘ffﬁ%ﬁ s zmap_ blocks short R AT e
AP B < s _firstdatazone short NS
s log zone size short Log. (Bt / 12 1)
S max_size long TR
_ | s_magic short ARG LIE
(| s imap[8] buffer head * | i % AU e R et g e 4l
s_zmap[8] buffer head * YA P AE m R 2 v e BT E 2l
s_dev short PR B
s_isup m_inode * W2 RGRE R 1 WA
A CEERAN B [P W inode * L RGN A
B < s _time long A% DRI]
s wait task struct * SRR B FR AR
s lock char BUE bR
s rd only char bR &
_ | s dirt char C A () bk

[&]9. 2 MINIX ROFBLR IR LEH

th BB, BT K 28 8 B b (s_zmap[8]), A n] 48K 8192 Mk, K,
MINIX X RS 1.0 ProsCRF o R & 48 (KD J& 64MB.

PSR, RN TRRRARR AN 1 e T AK KNS Ok E, A
FLHR TR 8191 AN i 1T AL AE R IR I o

IR A TR E RS S A P O, A PR AR A B X e i — AN s A

- 262 -

9.2 WATRERIR

Heo DL, Z BRI 1S A B AR AL BB DR 2R — A P AN e T,)
ICARYLAT A N BEAS AA EA

HE R T R AR S R PO (BH O RGBS (H S A A0
Ko BEAS TN RS R A TICE G SO AR SGAT R i SC g B id(uid)s SCPRRTE AL id (gid) SO

JERNVT & i TR) 45 . AN by AT 32 N T, LI 9.3 i

T-BAH B! 1t
(|1 mode short SRR @ e (rwx f67)
i uid short SCHETE RIS id
i size long SO (ETD
i mtime long B MURHE (A 1970.1.1:0 &R, #5)
i gid char SCPETE ERIA id
B2 [Talinks char REBER (1 20/ S IF R T)
SO A G B RS A . Ho
zone[0]-zone[6] & HHEH 55
i zonel9] short zone [T] /& — R HEEL 5,
zone[8]4& Ik CWE) [Al#ES .
_ vE: zone X R, W PERIX PP,
E9. 3 MINIX X &S 1. 0 fREY 1 T &

i_mode 7 Bt FH K ARAE A B S ALAN YT) BLBR B o FEELRA 15-12 I FRAE SO, A7 11-9 {R-AEHR

AT S E S B, AL 8-0 R ST VT IR B . AR B2 WL 3CAE include/sys/stat.h 1 include/fentl.h.

SO T R B 2 TR R B R B DX P R, T S SO A JUDEE s 0 2 T X e A AR I

R, SRS SRR AR | S A A i zone[]h . b, i_zone[[BUAHL T TAEI i Y AU N

PEFEES o i_zone[012! i_zone[6)H TAF LA TFUAI 7 AMHESL Y, By B, #7 OO N 45T

TK AT, JUARAEES 0 1 ST DR R B e A A A . SO R, AR B ke T

(i_zone[7]), XA AAHEE R IS o XF MINIX SO R G0 T DAZ IR 512 AN EEHes, Rkn]

DLk 512 M. 5 SR ER, WIFFEAE FH R (A e (i_zone[8]) . —IXIRJ4H) — A i1 H
KNG — kBt A Rk s ey BLF- 0k 512%612 /M. 2 0L 9.4 k.

4

i
Hevi

— IR AR

i zone[0]

i zonel[l]

i zone[2]

FEHE< [i zonel3]
i zone[4]
i_zone[5]
\ i_zone[6]
RS i zonel[7] -7 |
IR Y i zone[8] — g

E9.4 i HTRASER (XR) AR
P T A TN,