binary: rejigger ripgrep's handling of binary files

This commit attempts to surface binary filtering in a slightly more
user friendly way. Namely, before, ripgrep would silently stop
searching a file if it detected a NUL byte, even if it had previously
printed a match. This can lead to the user quite reasonably assuming
that there are no more matches, since a partial search is fairly
unintuitive. (ripgrep has this behavior by default because it really
wants to NOT search binary files at all, just like it doesn't search
gitignored or hidden files.)

With this commit, if a match has already been printed and ripgrep detects
a NUL byte, then it will print a warning message indicating that the search
stopped prematurely.

Moreover, this commit adds a new flag, --binary, which causes ripgrep to
stop filtering binary files, but in a way that still avoids dumping
binary data into terminals. That is, the --binary flag makes ripgrep
behave more like grep's default behavior.

For files explicitly specified in a search, e.g., `rg foo some-file`,
then no binary filtering is applied (just like no gitignore and no
hidden file filtering is applied). Instead, ripgrep behaves as if you
gave the --binary flag for all explicitly given files.

This was a fairly invasive change, and potentially increases the UX
complexity of ripgrep around binary files. (Before, there were two
binary modes, where as now there are three.) However, ripgrep is now a
bit louder with warning messages when binary file detection might
otherwise be hiding potential matches, so hopefully this is a net
improvement.

Finally, the `-uuu` convenience now maps to `--no-ignore --hidden
--binary`, since this is closer to the actualy intent of the
`--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a
consequence, `rg -uuu foo` should now search roughly the same number of
bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the
same number of bytes as `grep -ra foo`. (The "roughly" weasel word is
used because grep's and ripgrep's binary file detection might differ
somewhat---perhaps based on buffer sizes---which can impact exactly what
is and isn't searched.)

See the numerous tests in tests/binary.rs for intended behavior.

Fixes #306, Fixes #855
This commit is contained in:
Andrew Gallant
2019-04-08 19:28:38 -04:00
parent bd222ae93f
commit a7d26c8f14
22 changed files with 1324 additions and 71 deletions

View File

@@ -18,6 +18,7 @@ translatable to any command line shell environment.
* [Replacements](#replacements)
* [Configuration file](#configuration-file)
* [File encoding](#file-encoding)
* [Binary data](#binary-data)
* [Common options](#common-options)
@@ -680,6 +681,76 @@ $ rg '\w(?-u:\w)\w'
```
### Binary data
In addition to skipping hidden files and files in your `.gitignore` by default,
ripgrep also attempts to skip binary files. ripgrep does this by default
because binary files (like PDFs or images) are typically not things you want to
search when searching for regex matches. Moreover, if content in a binary file
did match, then it's possible for undesirable binary data to be printed to your
terminal and wreak havoc.
Unfortunately, unlike skipping hidden files and respecting your `.gitignore`
rules, a file cannot as easily be classified as binary. In order to figure out
whether a file is binary, the most effective heuristic that balances
correctness with performance is to simply look for `NUL` bytes. At that point,
the determination is simple: a file is considered "binary" if and only if it
contains a `NUL` byte somewhere in its contents.
The issue is that while most binary files will have a `NUL` byte toward the
beginning of its contents, this is not necessarily true. The `NUL` byte might
be the very last byte in a large file, but that file is still considered
binary. While this leads to a fair amount of complexity inside ripgrep's
implementation, it also results in some unintuitive user experiences.
At a high level, ripgrep operates in three different modes with respect to
binary files:
1. The default mode is to attempt to remove binary files from a search
completely. This is meant to mirror how ripgrep removes hidden files and
files in your `.gitignore` automatically. That is, as soon as a file is
detected as binary, searching stops. If a match was already printed (because
it was detected long before a `NUL` byte), then ripgrep will print a warning
message indicating that the search stopped prematurely. This default mode
**only applies to files searched by ripgrep as a result of recursive
directory traversal**, which is consistent with ripgrep's other automatic
filtering. For example, `rg foo .file` will search `.file` even though it
is hidden. Similarly, `rg foo binary-file` search `binary-file` in "binary"
mode automatically.
2. Binary mode is similar to the default mode, except it will not always
stop searching after it sees a `NUL` byte. Namely, in this mode, ripgrep
will continue searching a file that is known to be binary until the first
of two conditions is met: 1) the end of the file has been reached or 2) a
match is or has been seen. This means that in binary mode, if ripgrep
reports no matches, then there are no matches in the file. When a match does
occur, ripgrep prints a message similar to one it prints when in its default
mode indicating that the search has stopped prematurely. This mode can be
forcefully enabled for all files with the `--binary` flag. The purpose of
binary mode is to provide a way to discover matches in all files, but to
avoid having binary data dumped into your terminal.
3. Text mode completely disables all binary detection and searches all files
as if they were text. This is useful when searching a file that is
predominantly text but contains a `NUL` byte, or if you are specifically
trying to search binary data. This mode can be enabled with the `-a/--text`
flag. Note that when using this mode on very large binary files, it is
possible for ripgrep to use a lot of memory.
Unfortunately, there is one additional complexity in ripgrep that can make it
difficult to reason about binary files. That is, the way binary detection works
depends on the way that ripgrep searches your files. Specifically:
* When ripgrep uses memory maps, then binary detection is only performed on the
first few kilobytes of the file in addition to every matching line.
* When ripgrep doesn't use memory maps, then binary detection is performed on
all bytes searched.
This means that whether a file is detected as binary or not can change based
on the internal search strategy used by ripgrep. If you prefer to keep
ripgrep's binary file detection consistent, then you can disable memory maps
via the `--no-mmap` flag. (The cost will be a small performance regression when
searching very large files on some platforms.)
### Common options
ripgrep has a lot of flags. Too many to keep in your head at once. This section