This update brings with it many bug fixes:
* Better error messages are printed overall. We also include
explicit call out for unsupported features like backreferences
and look-around.
* Regexes like `\s*{` no longer emit incomprehensible errors.
* Unicode escape sequences, such as `\u{..}` are now supported.
For the most part, this upgrade was done in a straight-forward way. We
resist the urge to refactor the `grep` crate, in anticipation of it
being rewritten anyway.
Note that we removed the `--fixed-strings` suggestion whenever a regex
syntax error occurs. In practice, I've found that it results in a lot of
false positives, and I believe that its use is not as paramount now that
regex parse errors are much more readable.
Closes #268, Closes #395, Closes #702, Closes #853
265 lines
9.1 KiB
Rust
265 lines
9.1 KiB
Rust
/*!
|
|
The literals module is responsible for extracting *inner* literals out of the
|
|
AST of a regular expression. Normally this is the job of the regex engine
|
|
itself, but the regex engine doesn't look for inner literals. Since we're doing
|
|
line based searching, we can use them, so we need to do it ourselves.
|
|
|
|
Note that this implementation is incredibly suspicious. We need something more
|
|
principled.
|
|
*/
|
|
use std::cmp;
|
|
|
|
use regex::bytes::RegexBuilder;
|
|
use syntax::hir::{self, Hir, HirKind};
|
|
use syntax::hir::literal::{Literal, Literals};
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct LiteralSets {
|
|
prefixes: Literals,
|
|
suffixes: Literals,
|
|
required: Literals,
|
|
}
|
|
|
|
impl LiteralSets {
|
|
pub fn create(expr: &Hir) -> Self {
|
|
let mut required = Literals::empty();
|
|
union_required(expr, &mut required);
|
|
LiteralSets {
|
|
prefixes: Literals::prefixes(expr),
|
|
suffixes: Literals::suffixes(expr),
|
|
required: required,
|
|
}
|
|
}
|
|
|
|
pub fn to_regex_builder(&self) -> Option<RegexBuilder> {
|
|
if self.prefixes.all_complete() && !self.prefixes.is_empty() {
|
|
debug!("literal prefixes detected: {:?}", self.prefixes);
|
|
// When this is true, the regex engine will do a literal scan.
|
|
return None;
|
|
}
|
|
|
|
// Out of inner required literals, prefixes and suffixes, which one
|
|
// is the longest? We pick the longest to do fast literal scan under
|
|
// the assumption that a longer literal will have a lower false
|
|
// positive rate.
|
|
let pre_lcp = self.prefixes.longest_common_prefix();
|
|
let pre_lcs = self.prefixes.longest_common_suffix();
|
|
let suf_lcp = self.suffixes.longest_common_prefix();
|
|
let suf_lcs = self.suffixes.longest_common_suffix();
|
|
|
|
let req_lits = self.required.literals();
|
|
let req = match req_lits.iter().max_by_key(|lit| lit.len()) {
|
|
None => &[],
|
|
Some(req) => &***req,
|
|
};
|
|
|
|
let mut lit = pre_lcp;
|
|
if pre_lcs.len() > lit.len() {
|
|
lit = pre_lcs;
|
|
}
|
|
if suf_lcp.len() > lit.len() {
|
|
lit = suf_lcp;
|
|
}
|
|
if suf_lcs.len() > lit.len() {
|
|
lit = suf_lcs;
|
|
}
|
|
if req_lits.len() == 1 && req.len() > lit.len() {
|
|
lit = req;
|
|
}
|
|
|
|
// Special case: if we detected an alternation of inner required
|
|
// literals and its longest literal is bigger than the longest
|
|
// prefix/suffix, then choose the alternation. In practice, this
|
|
// helps with case insensitive matching, which can generate lots of
|
|
// inner required literals.
|
|
let any_empty = req_lits.iter().any(|lit| lit.is_empty());
|
|
if req.len() > lit.len() && req_lits.len() > 1 && !any_empty {
|
|
debug!("required literals found: {:?}", req_lits);
|
|
let alts: Vec<String> =
|
|
req_lits.into_iter().map(|x| bytes_to_regex(x)).collect();
|
|
let mut builder = RegexBuilder::new(&alts.join("|"));
|
|
builder.unicode(false);
|
|
Some(builder)
|
|
} else if lit.is_empty() {
|
|
None
|
|
} else {
|
|
debug!("required literal found: {:?}", show(lit));
|
|
let mut builder = RegexBuilder::new(&bytes_to_regex(&lit));
|
|
builder.unicode(false);
|
|
Some(builder)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn union_required(expr: &Hir, lits: &mut Literals) {
|
|
match *expr.kind() {
|
|
HirKind::Literal(hir::Literal::Unicode(c)) => {
|
|
let mut buf = [0u8; 4];
|
|
lits.cross_add(c.encode_utf8(&mut buf).as_bytes());
|
|
}
|
|
HirKind::Literal(hir::Literal::Byte(b)) => {
|
|
lits.cross_add(&[b]);
|
|
}
|
|
HirKind::Class(hir::Class::Unicode(ref cls)) => {
|
|
if count_unicode_class(cls) >= 5 || !lits.add_char_class(cls) {
|
|
lits.cut();
|
|
}
|
|
}
|
|
HirKind::Class(hir::Class::Bytes(ref cls)) => {
|
|
if count_byte_class(cls) >= 5 || !lits.add_byte_class(cls) {
|
|
lits.cut();
|
|
}
|
|
}
|
|
HirKind::Group(hir::Group { ref hir, .. }) => {
|
|
union_required(&**hir, lits);
|
|
}
|
|
HirKind::Repetition(ref x) => {
|
|
match x.kind {
|
|
hir::RepetitionKind::ZeroOrOne => lits.cut(),
|
|
hir::RepetitionKind::ZeroOrMore => lits.cut(),
|
|
hir::RepetitionKind::OneOrMore => {
|
|
union_required(&x.hir, lits);
|
|
lits.cut();
|
|
}
|
|
hir::RepetitionKind::Range(ref rng) => {
|
|
let (min, max) = match *rng {
|
|
hir::RepetitionRange::Exactly(m) => (m, Some(m)),
|
|
hir::RepetitionRange::AtLeast(m) => (m, None),
|
|
hir::RepetitionRange::Bounded(m, n) => (m, Some(n)),
|
|
};
|
|
repeat_range_literals(
|
|
&x.hir, min, max, x.greedy, lits, union_required);
|
|
}
|
|
}
|
|
}
|
|
HirKind::Concat(ref es) if es.is_empty() => {}
|
|
HirKind::Concat(ref es) if es.len() == 1 => {
|
|
union_required(&es[0], lits)
|
|
}
|
|
HirKind::Concat(ref es) => {
|
|
for e in es {
|
|
let mut lits2 = lits.to_empty();
|
|
union_required(e, &mut lits2);
|
|
if lits2.is_empty() {
|
|
lits.cut();
|
|
continue;
|
|
}
|
|
if lits2.contains_empty() {
|
|
lits.cut();
|
|
}
|
|
if !lits.cross_product(&lits2) {
|
|
// If this expression couldn't yield any literal that
|
|
// could be extended, then we need to quit. Since we're
|
|
// short-circuiting, we also need to freeze every member.
|
|
lits.cut();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
HirKind::Alternation(ref es) => {
|
|
alternate_literals(es, lits, union_required);
|
|
}
|
|
_ => lits.cut(),
|
|
}
|
|
}
|
|
|
|
fn repeat_range_literals<F: FnMut(&Hir, &mut Literals)>(
|
|
e: &Hir,
|
|
min: u32,
|
|
max: Option<u32>,
|
|
_greedy: bool,
|
|
lits: &mut Literals,
|
|
mut f: F,
|
|
) {
|
|
if min == 0 {
|
|
// This is a bit conservative. If `max` is set, then we could
|
|
// treat this as a finite set of alternations. For now, we
|
|
// just treat it as `e*`.
|
|
lits.cut();
|
|
} else {
|
|
let n = cmp::min(lits.limit_size(), min as usize);
|
|
// We only extract literals from a single repetition, even though
|
|
// we could do more. e.g., `a{3}` will have `a` extracted instead of
|
|
// `aaa`. The reason is that inner literal extraction can't be unioned
|
|
// across repetitions. e.g., extracting `foofoofoo` from `(\w+foo){3}`
|
|
// is wrong.
|
|
f(e, lits);
|
|
if n < min as usize {
|
|
lits.cut();
|
|
}
|
|
if max.map_or(true, |max| min < max) {
|
|
lits.cut();
|
|
}
|
|
}
|
|
}
|
|
|
|
fn alternate_literals<F: FnMut(&Hir, &mut Literals)>(
|
|
es: &[Hir],
|
|
lits: &mut Literals,
|
|
mut f: F,
|
|
) {
|
|
let mut lits2 = lits.to_empty();
|
|
for e in es {
|
|
let mut lits3 = lits.to_empty();
|
|
lits3.set_limit_size(lits.limit_size() / 5);
|
|
f(e, &mut lits3);
|
|
if lits3.is_empty() || !lits2.union(lits3) {
|
|
// If we couldn't find suffixes for *any* of the
|
|
// alternates, then the entire alternation has to be thrown
|
|
// away and any existing members must be frozen. Similarly,
|
|
// if the union couldn't complete, stop and freeze.
|
|
lits.cut();
|
|
return;
|
|
}
|
|
}
|
|
// All we do at the moment is look for prefixes and suffixes. If both
|
|
// are empty, then we report nothing. We should be able to do better than
|
|
// this, but we'll need something more expressive than just a "set of
|
|
// literals."
|
|
let lcp = lits2.longest_common_prefix();
|
|
let lcs = lits2.longest_common_suffix();
|
|
if !lcp.is_empty() {
|
|
lits.cross_add(lcp);
|
|
}
|
|
lits.cut();
|
|
if !lcs.is_empty() {
|
|
lits.add(Literal::empty());
|
|
lits.add(Literal::new(lcs.to_vec()));
|
|
}
|
|
}
|
|
|
|
/// Return the number of characters in the given class.
|
|
fn count_unicode_class(cls: &hir::ClassUnicode) -> u32 {
|
|
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
|
|
}
|
|
|
|
/// Return the number of bytes in the given class.
|
|
fn count_byte_class(cls: &hir::ClassBytes) -> u32 {
|
|
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
|
|
}
|
|
|
|
/// Converts an arbitrary sequence of bytes to a literal suitable for building
|
|
/// a regular expression.
|
|
fn bytes_to_regex(bs: &[u8]) -> String {
|
|
let mut s = String::with_capacity(bs.len());
|
|
for &b in bs {
|
|
s.push_str(&format!("\\x{:02x}", b));
|
|
}
|
|
s
|
|
}
|
|
|
|
/// Converts arbitrary bytes to a nice string.
|
|
fn show(bs: &[u8]) -> String {
|
|
// Why aren't we using this to feed to the regex? Doesn't really matter
|
|
// I guess. ---AG
|
|
use std::ascii::escape_default;
|
|
use std::str;
|
|
|
|
let mut nice = String::new();
|
|
for &b in bs {
|
|
let part: Vec<u8> = escape_default(b).collect();
|
|
nice.push_str(str::from_utf8(&part).unwrap());
|
|
}
|
|
nice
|
|
}
|