232 lines
8.3 KiB
Python
232 lines
8.3 KiB
Python
# -*- coding: utf-8 -*-
|
||
import configparser
|
||
import os
|
||
import shutil
|
||
import sqlite3
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
from os import makedirs
|
||
|
||
import requests
|
||
from gradio_client import Client, handle_file
|
||
|
||
import json
|
||
from logging_config import setup_logging
|
||
from sense_voice_process import short_audio_process
|
||
|
||
# 读取配置文件
|
||
config = configparser.ConfigParser()
|
||
config.read('config.ini')
|
||
max_download_threads = int(config['DEFAULT']['max_download_threads'])
|
||
|
||
logger = setup_logging()
|
||
|
||
# 定义创建表的SQL语句
|
||
CREATE_TABLE_SQL = """
|
||
CREATE TABLE IF NOT EXISTS audio_transcriptions (
|
||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||
course_id INTEGER NOT NULL,
|
||
filename TEXT NOT NULL,
|
||
text TEXT,
|
||
UNIQUE(course_id, filename)
|
||
);
|
||
"""
|
||
|
||
|
||
def create_audio_transcriptions_table(db_path):
|
||
"""
|
||
创建audio_transcriptions表的函数。
|
||
|
||
参数:
|
||
db_path -- SQLite数据库文件的路径
|
||
"""
|
||
# 连接到SQLite数据库
|
||
conn = sqlite3.connect(db_path)
|
||
cursor = conn.cursor()
|
||
|
||
try:
|
||
# 执行创建表的SQL语句
|
||
cursor.execute(CREATE_TABLE_SQL)
|
||
logger.info("表audio_transcriptions创建成功。")
|
||
except sqlite3.Error as e:
|
||
logger.error(f"创建表时出错: {e}")
|
||
finally:
|
||
# 关闭数据库连接
|
||
conn.close()
|
||
|
||
|
||
# 调用函数创建表
|
||
db_path = 'courses.db' # 数据库文件路径
|
||
|
||
|
||
# 下载音频文件
|
||
def download_file(url, local_path):
|
||
try:
|
||
with requests.get(url, stream=True) as r:
|
||
r.raise_for_status()
|
||
with open(local_path, 'wb') as f:
|
||
for chunk in r.iter_content(chunk_size=8192):
|
||
f.write(chunk)
|
||
if not os.path.exists(local_path):
|
||
raise FileNotFoundError(f"文件下载后未找到:{local_path}")
|
||
return local_path
|
||
except Exception as e:
|
||
logger.error(f"下载文件时出错:{e}")
|
||
return None
|
||
|
||
|
||
# 调用api将语音转换为文本
|
||
def voice2txt(voice_path):
|
||
|
||
# client = Client("http://192.168.31.3:7860/")
|
||
# text = client.predict(
|
||
# input_wav=handle_file(voice_path),
|
||
# language="zh",
|
||
# api_name="/model_inference"
|
||
# )
|
||
# logger.info(text)
|
||
text = short_audio_process(voice_path)
|
||
return text
|
||
|
||
|
||
# 保存文本到数据库
|
||
def save_to_db(course_id, filename, text_value):
|
||
conn = sqlite3.connect('courses.db')
|
||
cursor = conn.cursor()
|
||
cursor.execute("INSERT INTO audio_transcriptions (course_id, filename, text) VALUES (?, ?, ?)",
|
||
(course_id, filename, text_value))
|
||
conn.commit()
|
||
conn.close()
|
||
|
||
|
||
# 检查数据库中是否已存在转换后的文本
|
||
def check_db_for_text(course_id, filename):
|
||
conn = sqlite3.connect('courses.db')
|
||
cursor = conn.cursor()
|
||
cursor.execute("SELECT text FROM audio_transcriptions WHERE course_id=? AND filename=?", (course_id, filename))
|
||
result = cursor.fetchone()
|
||
conn.close()
|
||
return result[0] if result else None
|
||
|
||
|
||
def audio_to_text(audio_url, filename, course_id):
|
||
# 检查数据库中是否已存在转换后的文本
|
||
db_text = check_db_for_text(course_id, filename)
|
||
if db_text:
|
||
logger.info(f"文本已存在,无需重复转换:{filename}")
|
||
return db_text # 返回已存在的文本
|
||
|
||
try:
|
||
logger.info(f"Downloading audio file: {audio_url}")
|
||
download_path = os.path.join('course', filename)
|
||
local_audio_path = download_file(audio_url, download_path)
|
||
if local_audio_path is None:
|
||
logger.error("音频文件下载失败")
|
||
return "音频文件下载失败"
|
||
text_value = voice2txt(local_audio_path)
|
||
if text_value: # 只有当转换成功时才保存到数据库
|
||
save_to_db(course_id, filename, text_value)
|
||
os.remove(local_audio_path)
|
||
return text_value
|
||
except Exception as e:
|
||
logger.error(f"转换音频到文本时出错:{e}")
|
||
return f"音频转文本失败: {e}"
|
||
|
||
|
||
def process_item(item):
|
||
if item['category'] == 'text':
|
||
return f"{item['content']}\n"
|
||
elif item['category'] == 'image':
|
||
return f"![{item['content']}]({item['attachment']['url']})\n"
|
||
elif item['category'] == 'audio':
|
||
transcription = audio_to_text(item['attachment']['raw_url'], f"audio_{item['id']}.mp3", item['course_id'])
|
||
return f"{transcription}\n"
|
||
else:
|
||
return f"[{item['content']}]({item['attachment']['url']})\n"
|
||
|
||
|
||
def process_logseq_item(item):
|
||
if item['category'] == 'text':
|
||
return f"- {item['content']}\n"
|
||
elif item['category'] == 'image':
|
||
return f"- ![{item['content']}]({item['attachment']['url']})\n"
|
||
elif item['category'] == 'audio':
|
||
transcription = audio_to_text(item['attachment']['raw_url'], f"audio_{item['id']}.mp3", item['course_id'])
|
||
return f"- ![{item['content']}]({item['attachment']['url']})\n- {transcription}\n"
|
||
else:
|
||
return f"- [{item['content']}]({item['attachment']['url']})\n"
|
||
|
||
|
||
def json_to_markdown(json_file, markdown_file, logseq=False):
|
||
try:
|
||
logger.info(f"Reading JSON file: {json_file}")
|
||
with open(json_file, 'r', encoding='utf-8') as file:
|
||
data = json.load(file)
|
||
|
||
logger.info(f"Writing Markdown file: {markdown_file}")
|
||
with open(markdown_file, 'w', encoding='utf-8') as md_file:
|
||
with ThreadPoolExecutor(max_workers=max_download_threads) as executor: # Use a thread pool with 5 threads
|
||
futures = [executor.submit(process_logseq_item if logseq else process_item, item) for item in
|
||
data['data']]
|
||
for future in futures:
|
||
md_file.write(future.result()) # Write the result to the Markdown file
|
||
|
||
except Exception as e:
|
||
logger.error(f"处理JSON文件时出错:{e}")
|
||
|
||
|
||
def get_content():
|
||
# 连接到SQLite数据库
|
||
conn = sqlite3.connect('courses.db')
|
||
cursor = conn.cursor()
|
||
max_course_id = cursor.execute('SELECT id FROM courses ORDER BY id DESC LIMIT 1') # 获取数据库中最大的课程ID
|
||
if max_course_id:
|
||
max_course_id = max_course_id.fetchone()[0]
|
||
logger.info(f"The maximum course ID is {max_course_id}")
|
||
else:
|
||
logger.info("No courses found in the database.")
|
||
max_course_id = 11
|
||
start_course_id = max_course_id - 5
|
||
|
||
# 查询courses表中的所有课程ID
|
||
cursor.execute('SELECT id, title FROM courses where id >= ?', (start_course_id,))
|
||
# cursor.execute('SELECT id, title FROM courses where id >= 609')
|
||
course_ids_data = cursor.fetchall()
|
||
course_ids = [row[0] for row in course_ids_data]
|
||
course_ids_dict = dict(course_ids_data)
|
||
logger.info(course_ids_dict)
|
||
|
||
# 创建json文件夹
|
||
if not os.path.exists('json'):
|
||
os.makedirs('json')
|
||
|
||
# 先请求全部的链接获取数据,并将获取到的课程信息保存到数据库中
|
||
for course_id in course_ids:
|
||
logger.info(f"Processing course ID: {course_id}")
|
||
|
||
json_filename = os.path.join('json', f'{course_id}.json')
|
||
# copy_json_file_name = os.path.join('data', 'json', f'{course_ids_dict[course_id]}.json').replace('?', '?')
|
||
copy_json_file_name = os.path.join('course', f'{course_id}', 'json',
|
||
f'{course_ids_dict[course_id]}.json').replace('?', '?')
|
||
# md_file_name = os.path.join('data', 'markdown', f'{course_ids_dict[course_id]}.md')
|
||
md_file_name = os.path.join('course', f'{course_id}', f'{course_ids_dict[course_id]}.md')
|
||
if os.path.exists(json_filename):
|
||
logger.info(f"Course {course_id} JSON file already exists, using local file.")
|
||
makedirs(f'course/{course_id}/json', exist_ok=True)
|
||
shutil.copy2(json_filename, copy_json_file_name)
|
||
json_to_markdown(copy_json_file_name, md_file_name)
|
||
else:
|
||
continue
|
||
|
||
logseq_md_file_name = os.path.join('course', f'{course_id}', f'{course_ids_dict[course_id]}_logseq.md')
|
||
if os.path.exists(json_filename):
|
||
logger.info(f"Course {course_id} JSON file already exists, using local file.")
|
||
shutil.copy2(json_filename, copy_json_file_name)
|
||
json_to_markdown(copy_json_file_name, logseq_md_file_name, logseq=True)
|
||
else:
|
||
continue
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# create_audio_transcriptions_table(db_path)
|
||
get_content()
|