{
"cells": [
{
"cell_type": "markdown",
"source": [
"# 链式调用示例"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"outputs": []
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [
{
"data": {
"text/plain": " date\n0 2022-01-02\n1 2022-01-09\n2 2022-01-16\n3 2022-01-23\n4 2022-01-30",
"text/html": "
\n\n
\n \n \n | \n date | \n
\n \n \n \n | 0 | \n 2022-01-02 | \n
\n \n | 1 | \n 2022-01-09 | \n
\n \n | 2 | \n 2022-01-16 | \n
\n \n | 3 | \n 2022-01-23 | \n
\n \n | 4 | \n 2022-01-30 | \n
\n \n
\n
"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.DataFrame(dict(date=pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")))\n",
"data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [
{
"data": {
"text/plain": " date year month day year_month\n0 2022-01-02 2022 01 02 202201\n1 2022-01-09 2022 01 09 202201\n2 2022-01-16 2022 01 16 202201\n3 2022-01-23 2022 01 23 202201\n4 2022-01-30 2022 01 30 202201",
"text/html": "\n\n
\n \n \n | \n date | \n year | \n month | \n day | \n year_month | \n
\n \n \n \n | 0 | \n 2022-01-02 | \n 2022 | \n 01 | \n 02 | \n 202201 | \n
\n \n | 1 | \n 2022-01-09 | \n 2022 | \n 01 | \n 09 | \n 202201 | \n
\n \n | 2 | \n 2022-01-16 | \n 2022 | \n 01 | \n 16 | \n 202201 | \n
\n \n | 3 | \n 2022-01-23 | \n 2022 | \n 01 | \n 23 | \n 202201 | \n
\n \n | 4 | \n 2022-01-30 | \n 2022 | \n 01 | \n 30 | \n 202201 | \n
\n \n
\n
"
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"date\"] = data[\"date\"].astype(str)\n",
"data[\"year\"] = data[\"date\"].map(lambda s: s.split(\"-\")[0])\n",
"data[\"month\"] = data[\"date\"].map(lambda s: s.split(\"-\")[1])\n",
"data[\"day\"] = data[\"date\"].map(lambda s: s.split(\"-\")[2])\n",
"data[\"year_month\"] = data[\"year\"].str.cat(data[\"month\"])\n",
"data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 第一种重构方式"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"source": [
"data = (\n",
" pd.DataFrame({\"date\": pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")})\n",
" .astype({\"date\": \"str\"})[\"date\"]\n",
" .str.split(\"-\", expand=True)\n",
" .rename(\n",
" columns={\n",
" 0: \"year\",\n",
" 1: \"month\",\n",
" 2: \"day\",\n",
" }\n",
" )\n",
" .assign(\n",
" date=lambda df: df.apply(lambda r: \"-\".join(r.tolist()), axis=1),\n",
" year_month=lambda df: df[\"year\"].str.cat(df[\"month\"]),\n",
" )\n",
")\n",
"data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"execution_count": 4,
"outputs": [
{
"data": {
"text/plain": " year month day date year_month\n0 2022 01 02 2022-01-02 202201\n1 2022 01 09 2022-01-09 202201\n2 2022 01 16 2022-01-16 202201\n3 2022 01 23 2022-01-23 202201\n4 2022 01 30 2022-01-30 202201",
"text/html": "\n\n
\n \n \n | \n year | \n month | \n day | \n date | \n year_month | \n
\n \n \n \n | 0 | \n 2022 | \n 01 | \n 02 | \n 2022-01-02 | \n 202201 | \n
\n \n | 1 | \n 2022 | \n 01 | \n 09 | \n 2022-01-09 | \n 202201 | \n
\n \n | 2 | \n 2022 | \n 01 | \n 16 | \n 2022-01-16 | \n 202201 | \n
\n \n | 3 | \n 2022 | \n 01 | \n 23 | \n 2022-01-23 | \n 202201 | \n
\n \n | 4 | \n 2022 | \n 01 | \n 30 | \n 2022-01-30 | \n 202201 | \n
\n \n
\n
"
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
]
},
{
"cell_type": "markdown",
"source": [
"## 第二种重构方式"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [
{
"data": {
"text/plain": " year month day date year_month\n0 2022 01 02 2022-01-02 202201\n1 2022 01 09 2022-01-09 202201\n2 2022 01 16 2022-01-16 202201\n3 2022 01 23 2022-01-23 202201\n4 2022 01 30 2022-01-30 202201",
"text/html": "\n\n
\n \n \n | \n year | \n month | \n day | \n date | \n year_month | \n
\n \n \n \n | 0 | \n 2022 | \n 01 | \n 02 | \n 2022-01-02 | \n 202201 | \n
\n \n | 1 | \n 2022 | \n 01 | \n 09 | \n 2022-01-09 | \n 202201 | \n
\n \n | 2 | \n 2022 | \n 01 | \n 16 | \n 2022-01-16 | \n 202201 | \n
\n \n | 3 | \n 2022 | \n 01 | \n 23 | \n 2022-01-23 | \n 202201 | \n
\n \n | 4 | \n 2022 | \n 01 | \n 30 | \n 2022-01-30 | \n 202201 | \n
\n \n
\n
"
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = (\n",
" pd.DataFrame({\"date\": pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")})\n",
" .astype({\"date\": \"str\"})[\"date\"]\n",
" .str.extract(r\"(?P\\d{4})-(?P\\d{2})-(?P\\d{2})\")\n",
" .assign(\n",
" date=lambda df: df.apply(lambda row: \"-\".join(row.tolist()), axis=1),\n",
" year_month=lambda df: df[\"year\"].str.cat(df[\"month\"]),\n",
" )\n",
")\n",
"\n",
"data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 第三种重构方式"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [
{
"data": {
"text/plain": " date year month day year_month\n0 2022-01-02 2022 01 02 202201\n1 2022-01-09 2022 01 09 202201\n2 2022-01-16 2022 01 16 202201\n3 2022-01-23 2022 01 23 202201\n4 2022-01-30 2022 01 30 202201",
"text/html": "\n\n
\n \n \n | \n date | \n year | \n month | \n day | \n year_month | \n
\n \n \n \n | 0 | \n 2022-01-02 | \n 2022 | \n 01 | \n 02 | \n 202201 | \n
\n \n | 1 | \n 2022-01-09 | \n 2022 | \n 01 | \n 09 | \n 202201 | \n
\n \n | 2 | \n 2022-01-16 | \n 2022 | \n 01 | \n 16 | \n 202201 | \n
\n \n | 3 | \n 2022-01-23 | \n 2022 | \n 01 | \n 23 | \n 202201 | \n
\n \n | 4 | \n 2022-01-30 | \n 2022 | \n 01 | \n 30 | \n 202201 | \n
\n \n
\n
"
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = (\n",
" pd.DataFrame({\"date\": pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")})\n",
" .assign(\n",
" year=lambda df: df[\"date\"].dt.year,\n",
" month=lambda df: df[\"date\"].dt.month.astype(str).str.zfill(2),\n",
" day=lambda df: df[\"date\"].dt.day.astype(str).str.zfill(2),\n",
" year_month=lambda df: df[\"date\"].dt.strftime(\"%Y%m\"),\n",
" )\n",
" .astype(str)\n",
")\n",
"data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"# 链式调用的实现原理以及优劣"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"class Command:\n",
" def __init__(self, name=None):\n",
" self.name = name\n",
"\n",
" def set_options(self, **kwargs):\n",
" for k, v in kwargs.items():\n",
" if not hasattr(self, k):\n",
" setattr(self, k, v)\n",
" return self\n",
"\n",
" def parse(self):\n",
" opts = [f\"{v}\" for k, v in self.__dict__.items() if k != \"name\"]\n",
" final = \" \".join([self.name, *opts])\n",
" return final\n",
"\n",
" def __repr__(self):\n",
" opts = [f\"{k}={v}\" for k, v in self.__dict__.items() if k != \"name\"]\n",
" return f\"Command\""
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [],
"source": [
"cmd = Command(\"curl\").set_options(verbose=\"-v\").set_options(target=\"sspai.com\")"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Command\n"
]
}
],
"source": [
"print(cmd)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"curl -v sspai.com\n"
]
}
],
"source": [
"print(cmd.parse())"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}