{ "cells": [ { "cell_type": "markdown", "source": [ "# 链式调用示例" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } }, "outputs": [] }, { "cell_type": "code", "execution_count": 2, "outputs": [ { "data": { "text/plain": " date\n0 2022-01-02\n1 2022-01-09\n2 2022-01-16\n3 2022-01-23\n4 2022-01-30", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
date
02022-01-02
12022-01-09
22022-01-16
32022-01-23
42022-01-30
\n
" }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "data = pd.DataFrame(dict(date=pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")))\n", "data.head()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 3, "outputs": [ { "data": { "text/plain": " date year month day year_month\n0 2022-01-02 2022 01 02 202201\n1 2022-01-09 2022 01 09 202201\n2 2022-01-16 2022 01 16 202201\n3 2022-01-23 2022 01 23 202201\n4 2022-01-30 2022 01 30 202201", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
dateyearmonthdayyear_month
02022-01-0220220102202201
12022-01-0920220109202201
22022-01-1620220116202201
32022-01-2320220123202201
42022-01-3020220130202201
\n
" }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[\"date\"] = data[\"date\"].astype(str)\n", "data[\"year\"] = data[\"date\"].map(lambda s: s.split(\"-\")[0])\n", "data[\"month\"] = data[\"date\"].map(lambda s: s.split(\"-\")[1])\n", "data[\"day\"] = data[\"date\"].map(lambda s: s.split(\"-\")[2])\n", "data[\"year_month\"] = data[\"year\"].str.cat(data[\"month\"])\n", "data.head()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 第一种重构方式" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "source": [ "data = (\n", " pd.DataFrame({\"date\": pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")})\n", " .astype({\"date\": \"str\"})[\"date\"]\n", " .str.split(\"-\", expand=True)\n", " .rename(\n", " columns={\n", " 0: \"year\",\n", " 1: \"month\",\n", " 2: \"day\",\n", " }\n", " )\n", " .assign(\n", " date=lambda df: df.apply(lambda r: \"-\".join(r.tolist()), axis=1),\n", " year_month=lambda df: df[\"year\"].str.cat(df[\"month\"]),\n", " )\n", ")\n", "data.head()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } }, "execution_count": 4, "outputs": [ { "data": { "text/plain": " year month day date year_month\n0 2022 01 02 2022-01-02 202201\n1 2022 01 09 2022-01-09 202201\n2 2022 01 16 2022-01-16 202201\n3 2022 01 23 2022-01-23 202201\n4 2022 01 30 2022-01-30 202201", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
yearmonthdaydateyear_month
0202201022022-01-02202201
1202201092022-01-09202201
2202201162022-01-16202201
3202201232022-01-23202201
4202201302022-01-30202201
\n
" }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ] }, { "cell_type": "markdown", "source": [ "## 第二种重构方式" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 5, "outputs": [ { "data": { "text/plain": " year month day date year_month\n0 2022 01 02 2022-01-02 202201\n1 2022 01 09 2022-01-09 202201\n2 2022 01 16 2022-01-16 202201\n3 2022 01 23 2022-01-23 202201\n4 2022 01 30 2022-01-30 202201", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
yearmonthdaydateyear_month
0202201022022-01-02202201
1202201092022-01-09202201
2202201162022-01-16202201
3202201232022-01-23202201
4202201302022-01-30202201
\n
" }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = (\n", " pd.DataFrame({\"date\": pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")})\n", " .astype({\"date\": \"str\"})[\"date\"]\n", " .str.extract(r\"(?P\\d{4})-(?P\\d{2})-(?P\\d{2})\")\n", " .assign(\n", " date=lambda df: df.apply(lambda row: \"-\".join(row.tolist()), axis=1),\n", " year_month=lambda df: df[\"year\"].str.cat(df[\"month\"]),\n", " )\n", ")\n", "\n", "data.head()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 第三种重构方式" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 6, "outputs": [ { "data": { "text/plain": " date year month day year_month\n0 2022-01-02 2022 01 02 202201\n1 2022-01-09 2022 01 09 202201\n2 2022-01-16 2022 01 16 202201\n3 2022-01-23 2022 01 23 202201\n4 2022-01-30 2022 01 30 202201", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
dateyearmonthdayyear_month
02022-01-0220220102202201
12022-01-0920220109202201
22022-01-1620220116202201
32022-01-2320220123202201
42022-01-3020220130202201
\n
" }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = (\n", " pd.DataFrame({\"date\": pd.date_range(\"20220101\", \"20220201\", freq=\"1W\")})\n", " .assign(\n", " year=lambda df: df[\"date\"].dt.year,\n", " month=lambda df: df[\"date\"].dt.month.astype(str).str.zfill(2),\n", " day=lambda df: df[\"date\"].dt.day.astype(str).str.zfill(2),\n", " year_month=lambda df: df[\"date\"].dt.strftime(\"%Y%m\"),\n", " )\n", " .astype(str)\n", ")\n", "data.head()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 链式调用的实现原理以及优劣" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 7, "outputs": [], "source": [ "class Command:\n", " def __init__(self, name=None):\n", " self.name = name\n", "\n", " def set_options(self, **kwargs):\n", " for k, v in kwargs.items():\n", " if not hasattr(self, k):\n", " setattr(self, k, v)\n", " return self\n", "\n", " def parse(self):\n", " opts = [f\"{v}\" for k, v in self.__dict__.items() if k != \"name\"]\n", " final = \" \".join([self.name, *opts])\n", " return final\n", "\n", " def __repr__(self):\n", " opts = [f\"{k}={v}\" for k, v in self.__dict__.items() if k != \"name\"]\n", " return f\"Command\"" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 8, "outputs": [], "source": [ "cmd = Command(\"curl\").set_options(verbose=\"-v\").set_options(target=\"sspai.com\")" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 9, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Command\n" ] } ], "source": [ "print(cmd)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 10, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "curl -v sspai.com\n" ] } ], "source": [ "print(cmd.parse())" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }