集成MCP -> 小艾智能体项目

This commit is contained in:
userpu
2025-12-19 14:30:47 +08:00
parent c0d2bd73a3
commit 74d6f5356d
16 changed files with 359 additions and 2 deletions

2
.idea/encodings.xml generated
View File

@@ -7,6 +7,8 @@
<file url="file://$PROJECT_DIR$/langchain4j-ai-image/src/main/resources" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/langchain4j-ai-low-high-api/src/main/java" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/langchain4j-ai-low-high-api/src/main/resources" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/langchain4j-ai-mcp/src/main/java" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/langchain4j-ai-mcp/src/main/resources" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/langchain4j-ai-memory/src/main/java" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/langchain4j-ai-memory/src/main/resources" charset="UTF-8" />
<file url="file://$PROJECT_DIR$/langchain4j-ai-model-params/src/main/java" charset="UTF-8" />

View File

@@ -0,0 +1,73 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.iwe3</groupId>
<artifactId>langchain4j-ai-java</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>langchain4j-ai-mcp</artifactId>
<properties>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!-- MCP Client 依赖 -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-mcp</artifactId>
</dependency>
<!-- 接入阿里云百炼平台 -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-community-dashscope-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency>
<!-- Spring Boot Starter Data MongoDB -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<!--流式输出-->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-reactor</artifactId>
<version>1.9.1-beta17</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--导入低阶依赖-->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
<version>1.9.1-beta17</version>
</dependency>
<!--导入高阶依赖-->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
<version>1.9.1-beta17</version>
</dependency>
</dependencies>
</project>

View File

@@ -0,0 +1,12 @@
package com.iwe3.langchain4j;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class McpApplication {
public static void main(String[] args) {
SpringApplication.run(McpApplication.class,args);
}
}

View File

@@ -0,0 +1,57 @@
package com.iwe3.langchain4j.config;
import com.iwe3.langchain4j.service.McpService;
import dev.langchain4j.mcp.McpToolProvider;
import dev.langchain4j.mcp.client.DefaultMcpClient;
import dev.langchain4j.mcp.client.McpClient;
import dev.langchain4j.mcp.client.transport.McpTransport;
import dev.langchain4j.mcp.client.transport.stdio.StdioMcpTransport;
import dev.langchain4j.model.chat.StreamingChatModel;
import dev.langchain4j.service.AiServices;
import dev.langchain4j.service.tool.ToolProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.List;
import java.util.Map;
@Configuration
public class BaiduMcpConfig {
@Autowired
private StreamingChatModel streamingChatModel;
@Bean
public McpService mcpService(){
/**1.构建McpTransport协议
*
* 1.1 cmd启动 Windows 命令行解释器。
* 1.2 /c告诉 cmd 执行完后面的命令后关闭自身。
* 1.3 npxnpx = npm execute packageNode.js 的一个工具,用于执行 npm 包中的可执行文件。
* 1.4 -y 或 --yes自动确认操作类似于默认接受所有提示
* 1.5 @baidumap/mcp-server-baidu-map要通过 npx 执行的 npm 包名
* 1.6 BAIDU_MAP_API_KEY 是访问百度地图开放平台API的AK
*/
McpTransport transport = new StdioMcpTransport.Builder()
.command(List.of("cmd", "/c", "npx", "-y", "@baidumap/mcp-server-baidu-map"))
.environment(Map.of("BAIDU_MAP_API_KEY", System.getenv("BAIDU_MAP_API_KEY")))
.build();
// 2.构建McpClient客户端
McpClient mcpClient = new DefaultMcpClient.Builder()
.transport(transport)
.build();
// 3.创建工具集和原生的FunctionCalling类似
ToolProvider toolProvider = McpToolProvider.builder()
.mcpClients(mcpClient)
.build();
// 4.通过AiServivces给我们自定义接口McpService构建实现类并将工具集和大模型赋值给AiService
return AiServices.builder(McpService.class)
.streamingChatModel(streamingChatModel)
.toolProvider(toolProvider)
.build();
}
}

View File

@@ -0,0 +1,37 @@
package com.iwe3.langchain4j.controller;
import com.iwe3.langchain4j.service.McpService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @Description: 知识出处
* 第1步如何进行mcp编码
* https://docs.langchain4j.dev/tutorials/mcp#creating-an-mcp-tool-provider
*
* 第2步如何使用baidu map mcp它提供了哪些功能对外服务
* https://mcp.so/zh/server/baidu-map/baidu-maps?tab=tools
*
* http://localhost:9012/lc4j/mcp/chat?question=查询117.173.150.122归属地
* http://localhost:9012/lc4j/mcp/chat?question=查询都江堰天气
* http://localhost:9012/lc4j/mcp/chat?question=查询成都成华区到都江堰路线规划
*/
@RestController
public class McpCallServerController {
@Autowired
private McpService mcpService;
@GetMapping("/lc4j/mcp/chat")
public Flux<String> chat(@RequestParam("question") String question) throws Exception
{
// 调用我们定义的HighApi接口,通过大模型对百度mcpserver调用
return mcpService.chat(question);
}
}

View File

@@ -0,0 +1,8 @@
package com.iwe3.langchain4j.service;
import reactor.core.publisher.Flux;
public interface McpService
{
Flux<String> chat(String question);
}

View File

@@ -0,0 +1,27 @@
server:
port: 9012
servlet:
encoding:
charset: UTF-8
enabled: true
force: true
spring:
application:
name: langchain4j-ai-mcp
langchain4j:
community:
dashscope:
streaming-chat-model:
api-key: ${DASH_SCOPE_API_KEY}
model-name: qwen-plus
chat-model:
api-key: ${DASH_SCOPE_API_KEY}
model-name: qwen-plus
# 只有日志级别调整为debug级别同时配置以上 langchain 日志输出开关才有效
logging:
level:
dev:
langchain4j: DEBUG

View File

@@ -18,6 +18,19 @@
<knife4j.version>4.3.0</knife4j.version>
</properties>
<dependencies>
<!-- MCP Client 依赖 -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-mcp</artifactId>
<exclusions>
<!--提出JDK的访问远程模式-->
<exclusion>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-http-client-jdk</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- 接入阿里云百炼平台 -->
<dependency>
<groupId>dev.langchain4j</groupId>

View File

@@ -3,10 +3,13 @@ package com.iwe3.langchain4j;
import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;
@MapperScan("com.iwe3.langchain4j.mapper")
@SpringBootApplication
public class XiaoAIAgentApplication {
public static void main(String[] args) {
SpringApplication.run(XiaoAIAgentApplication.class,args);
}

View File

@@ -0,0 +1,62 @@
package com.iwe3.langchain4j.config;
import com.iwe3.langchain4j.mcp.BaiduMcpService;
import dev.langchain4j.mcp.McpToolProvider;
import dev.langchain4j.mcp.client.DefaultMcpClient;
import dev.langchain4j.mcp.client.McpClient;
import dev.langchain4j.mcp.client.transport.McpTransport;
import dev.langchain4j.mcp.client.transport.stdio.StdioMcpTransport;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.model.chat.StreamingChatModel;
import dev.langchain4j.service.AiServices;
import dev.langchain4j.service.tool.ToolProvider;
import jakarta.annotation.Resource;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.List;
import java.util.Map;
@Configuration
public class BaiduMcpConfig {
@Resource
private ChatModel chatModelQwen;
@Bean
public BaiduMcpService baiduMcpService(){
/**1.构建McpTransport协议
*
* 1.1 cmd启动 Windows 命令行解释器。
* 1.2 /c告诉 cmd 执行完后面的命令后关闭自身。
* 1.3 npxnpx = npm execute packageNode.js 的一个工具,用于执行 npm 包中的可执行文件。
* 1.4 -y 或 --yes自动确认操作类似于默认接受所有提示
* 1.5 @baidumap/mcp-server-baidu-map要通过 npx 执行的 npm 包名
* 1.6 BAIDU_MAP_API_KEY 是访问百度地图开放平台API的AK
*/
var transport = new StdioMcpTransport.Builder()
.command(List.of("cmd", "/c", "npx", "-y", "@baidumap/mcp-server-baidu-map"))
.environment(Map.of("BAIDU_MAP_API_KEY", System.getenv("BAIDU_MAP_API_KEY")))
.build();
// 2.构建McpClient客户端
var mcpClient = new DefaultMcpClient.Builder()
.transport(transport)
.build();
// 3.创建工具集和原生的FunctionCalling类似
var toolProvider = McpToolProvider.builder()
.mcpClients(mcpClient)
.build();
// 4.通过AiServivces给我们自定义接口McpService构建实现类并将工具集和大模型赋值给AiService
return AiServices.builder(BaiduMcpService.class)
.chatModel(chatModelQwen)
.toolProvider(toolProvider)
.build();
}
}

View File

@@ -1,6 +1,8 @@
package com.iwe3.langchain4j.config;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.model.chat.StreamingChatModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.model.openai.OpenAiStreamingChatModel;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@@ -20,4 +22,19 @@ public class LLMConfig {
.baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1")
.build();
}
/**
* 普通对话接口 chatModelQwen
* @return
*/
@Bean
public ChatModel chatModelQwen(){
/*大模型3件套apikey ,model-name,base-url */
return OpenAiChatModel.builder()
.apiKey(System.getenv("DASH_SCOPE_API_KEY"))
.modelName("qwen-plus")
.baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1")
.build();
}
}

View File

@@ -0,0 +1,6 @@
package com.iwe3.langchain4j.mcp;
public interface BaiduMcpService
{
String chat(String question);
}

View File

@@ -12,7 +12,7 @@ import reactor.core.publisher.Flux;
@AiService(wiringMode = AiServiceWiringMode.EXPLICIT
,streamingChatModel = "streamingChatModel",
chatMemoryProvider = "chatMemoryProvider",
tools = {"appointmentTools"},
tools = {"appointmentTools","baiduMcpTools"},
contentRetriever = "contentRetrieverInPinecone")
public interface XiaoAIChatAssistant {

View File

@@ -0,0 +1,39 @@
package com.iwe3.langchain4j.tools;
import com.iwe3.langchain4j.mcp.BaiduMcpService;
import dev.langchain4j.agent.tool.P;
import dev.langchain4j.agent.tool.Tool;
import dev.langchain4j.agent.tool.ToolSpecification;
import dev.langchain4j.data.message.UserMessage;
import dev.langchain4j.mcp.McpToolProvider;
import dev.langchain4j.mcp.client.McpClient;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.model.chat.request.ChatRequest;
import dev.langchain4j.model.chat.response.ChatResponse;
import jakarta.annotation.Resource;
import org.springframework.stereotype.Component;
import reactor.core.publisher.Flux;
import java.util.List;
@Component
public class BaiduMcpTools {
@Resource
private BaiduMcpService baiduMcpService;
@Tool(name = "query_baidu_mcp",value = """
该工具通过调用百度 MCP多能力服务平台来回答用户问题。
支持以下三类查询:
- IP 地址归属地例如“IP 地址 8.8.8.8 位于哪里?”
- 天气预报:例如,“今天成都天气怎么样?”
- 前往华西医院的交通路线:例如,“从春熙路怎么去华西医院?”
输入:一个与 IP 归属地、天气或华西医院路线相关的自然语言问题。
输出:来自 MCP 服务的简洁、准确的事实性回答。
只要用户询问上述任一类型的问题,必须使用此工具,不得自行回答。
""")
public String invocationBaiduMcpServer(String question) {
System.out.println("调用百度MCP服务开始");
return baiduMcpService.chat(question);
}
}

View File

@@ -28,4 +28,4 @@ langchain4j:
dashscope:
embedding-model:
model-name: text-embedding-v3
api-key: ${DASH_SCOPE_API_KEY}
api-key: ${DASH_SCOPE_API_KEY}

View File

@@ -24,6 +24,7 @@
<module>langchain4j-ai-tools</module>
<module>langchain4j-ai-rag</module>
<module>langchain4j-ai-pinecone</module>
<module>langchain4j-ai-mcp</module>
</modules>
<properties>