Files
songyi/utils/export_utils.py
2025-04-15 09:11:14 +08:00

74 lines
2.1 KiB
Python

import os
import torch
def export(
model, quantize: bool = False, opset_version: int = 14, type="onnx", **kwargs
):
model_scripts = model.export(**kwargs)
export_dir = kwargs.get("output_dir", os.path.dirname(kwargs.get("init_param")))
os.makedirs(export_dir, exist_ok=True)
if not isinstance(model_scripts, (list, tuple)):
model_scripts = (model_scripts,)
for m in model_scripts:
m.eval()
if type == "onnx":
_onnx(
m,
quantize=quantize,
opset_version=opset_version,
export_dir=export_dir,
**kwargs,
)
print("output dir: {}".format(export_dir))
return export_dir
def _onnx(
model,
quantize: bool = False,
opset_version: int = 14,
export_dir: str = None,
**kwargs,
):
dummy_input = model.export_dummy_inputs()
verbose = kwargs.get("verbose", False)
export_name = model.export_name()
model_path = os.path.join(export_dir, export_name)
torch.onnx.export(
model,
dummy_input,
model_path,
verbose=verbose,
opset_version=opset_version,
input_names=model.export_input_names(),
output_names=model.export_output_names(),
dynamic_axes=model.export_dynamic_axes(),
)
if quantize:
from onnxruntime.quantization import QuantType, quantize_dynamic
import onnx
quant_model_path = model_path.replace(".onnx", "_quant.onnx")
if not os.path.exists(quant_model_path):
onnx_model = onnx.load(model_path)
nodes = [n.name for n in onnx_model.graph.node]
nodes_to_exclude = [
m for m in nodes if "output" in m or "bias_encoder" in m or "bias_decoder" in m
]
quantize_dynamic(
model_input=model_path,
model_output=quant_model_path,
op_types_to_quantize=["MatMul"],
per_channel=True,
reduce_range=False,
weight_type=QuantType.QUInt8,
nodes_to_exclude=nodes_to_exclude,
)